123456789101112131415161718192021222324 |
- #!/usr/bin/python3
- # -*- coding: utf-8 -*-
- import tensorflow as tf
- from tensorflow.keras import layers, models
- trainingData = tf.constant([[0, 0], [0, 1], [1, 0], [1, 1]])
- trainLabels = tf.constant([ 0, 1, 1, 0 ])
- model = models.Sequential()
- model.add(layers.Dense(32, input_dim=2, activation='relu'))
- model.add(layers.Dense(1, activation='sigmoid'))
- model.compile(loss='mean_squared_error',
- optimizer='adam',
- metrics=['binary_accuracy'])
- model.fit(trainingData, trainLabels, epochs=400)
- prediction = model.predict(trainingData)
- for (a, b), (y,) in zip(trainingData, prediction):
- print("{:.0f} xor {:.0f} = {:.0f}".format(a, b, y))
-
|