1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- import tensorflow as tf
- import tensorflow.keras as keras
- from tensorflow.keras import layers
- from tensorflow.keras.layers import Input, Embedding, LSTM, Dense, Dropout, Flatten, MaxPooling2D, Conv2D
- from tensorflow.keras.models import Model, Sequential
- from tensorflow.keras.datasets import mnist
- from tensorflow.keras.utils import plot_model, to_categorical
- import numpy as np
- from IPython import embed
- import sys
- sys.path.append('../hostLib/')
- from hostLib.layers.conv2d import Conv2D as Conv2DFPGA
- batch_size = 128
- num_classes = 10
- epochs = 1200
- # input image dimensions
- img_rows, img_cols = 28, 28
- # the data, split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
- x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
- x_train = x_train.astype('float')
- x_test = x_test.astype('float')
- #x_train /= 255
- #x_test /= 255
- print('x_train shape:', x_train.shape)
- print(x_train.shape[0], 'train samples')
- print(x_test.shape[0], 'test samples')
- # convert class vectors to binary class matrices
- y_train = to_categorical(y_train, num_classes)
- y_test = to_categorical(y_test, num_classes)
- i = layers.Input(shape=(28, 28, 1))
- a = layers.Lambda(lambda x: tf.image.resize(x, (228,228)))(i)
- b = Conv2DFPGA(2)(a)
- c = Conv2DFPGA(1)(a)
- d = Conv2DFPGA(1)(layers.Lambda(lambda x: tf.image.resize(x, (228,228)))(b))
- e = Conv2DFPGA(2)(layers.Lambda(lambda x: tf.image.resize(x, (228,228)))(c))
- print(a)
- print(b)
- print(c)
- print(d)
- print(e)
- x = layers.Add()([d,e])
- y = layers.Flatten()(x)
- z = layers.Dense(num_classes, activation='softmax')(y)
- model = Model(inputs=i, outputs=z)
- print(model.output_shape)
- model.compile(loss=keras.losses.categorical_crossentropy,
- optimizer=keras.optimizers.Adadelta(),
- metrics=['accuracy'])
- plot_model(model, to_file='model.png', expand_nested=True, show_shapes=True)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=epochs,
- verbose=1,
- validation_data=(x_test, y_test))
- score = model.evaluate(x_test, y_test, verbose=0)
- print('Test loss:', score[0])
- print('Test accuracy:', score[1])
|