123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- # from https://keras.io/examples/mnist_cnn/
- import tensorflow as tf
- import tensorflow.keras as keras
- from tensorflow.keras import layers
- from tensorflow.keras.layers import Input, Embedding, LSTM, Dense, Dropout, Flatten, MaxPooling2D, Conv2D
- from tensorflow.keras.models import Model, Sequential
- from tensorflow.keras.datasets import mnist
- from tensorflow.keras.utils import plot_model, to_categorical
- import numpy as np
- from IPython import embed
- import sys
- sys.path.append('../hostLib/')
- from hostLib.layers.conv2d import Conv2D as Conv2DFPGA
- batch_size = 128
- num_classes = 10
- epochs = 1200
- # input image dimensions
- img_rows, img_cols = 28, 28
- # the data, split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
- x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
- x_train = x_train.astype('float')
- x_test = x_test.astype('float')
- #x_train /= 255
- #x_test /= 255
- print('x_train shape:', x_train.shape)
- print(x_train.shape[0], 'train samples')
- print(x_test.shape[0], 'test samples')
- # convert class vectors to binary class matrices
- y_train = to_categorical(y_train, num_classes)
- y_test = to_categorical(y_test, num_classes)
- model = Sequential()
- model.add(layers.Lambda(lambda x: tf.image.resize(x, (228,228)))) #to-do: implement 2 stage 28x28_3x3 conv2d with relu
- model.add(Conv2DFPGA(1))#32
- model.add(layers.Activation('relu'))
- model.add(layers.Lambda(lambda x: tf.image.resize(x, (228,228))))
- model.add(Conv2DFPGA(1))#64
- model.add(layers.Activation('relu'))
- model.add(MaxPooling2D(pool_size=(int(228/28*2), int(228/28*2))))
- model.add(Dropout(0.25))
- model.add(Flatten())
- model.add(Dense(128, activation='relu'))
- model.add(Dropout(0.5))
- model.add(Dense(num_classes, activation='softmax'))
- model.compile(loss=keras.losses.categorical_crossentropy,
- optimizer=keras.optimizers.Adadelta(),
- metrics=['accuracy'])
- plot_model(model, to_file='model.png', expand_nested=True, show_shapes=True)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=epochs,
- verbose=1,
- validation_data=(x_test, y_test))
- score = model.evaluate(x_test, y_test, verbose=0)
- print('Test loss:', score[0])
- print('Test accuracy:', score[1])
|