12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- # from https://www.tensorflow.org/tutorials/images/cnn
- import tensorflow as tf
- from tensorflow.keras import datasets, layers, models
- import matplotlib.pyplot as plt
- import sys
- sys.path.append('../hostLib/')
- from hostLib.layers.conv2d import Conv2D as Conv2DFPGA
- (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
- # Normalize pixel values to be between 0 and 1
- train_images, test_images = train_images / 255.0, test_images / 255.0
- class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
- 'dog', 'frog', 'horse', 'ship', 'truck']
- plt.figure(figsize=(10,10))
- for i in range(25):
- plt.subplot(5,5,i+1)
- plt.xticks([])
- plt.yticks([])
- plt.grid(False)
- plt.imshow(train_images[i], cmap=plt.cm.binary)
- # The CIFAR labels happen to be arrays,
- # which is why you need the extra index
- plt.xlabel(class_names[train_labels[i][0]])
- plt.show()
- model = models.Sequential()
- model.add(layers.Lambda(lambda x: tf.image.resize(x, (228,228)))) #to-do: implement 3 stage 32x32_3x3 conv2d with relu
- model.add(Conv2DFPGA(1))#32
- model.add(layers.Activation('relu'))
- model.add(layers.Lambda(lambda x: tf.image.resize(x, (228,228))))
- model.add(Conv2DFPGA(1))#64
- model.add(layers.Activation('relu'))
- model.add(layers.Lambda(lambda x: tf.image.resize(x, (228,228))))
- model.add(Conv2DFPGA(1))#64
- model.add(layers.Activation('relu'))
- model.add(layers.MaxPooling2D(pool_size=(16, 16)))
- model.add(layers.Flatten())
- model.add(layers.Dense(64, activation='relu'))
- model.add(layers.Dense(10))
- model.build(input_shape=(None, 32, 32, 3))
- model.summary()
- model.compile(optimizer='adam',
- loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
- metrics=['accuracy'])
- history = model.fit(train_images, train_labels, epochs=10,
- validation_data=(test_images, test_labels))
- plt.plot(history.history['accuracy'], label='accuracy')
- plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
- plt.xlabel('Epoch')
- plt.ylabel('Accuracy')
- plt.ylim([0.5, 1])
- plt.legend(loc='lower right')
- test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
- print(test_acc)
- plt.show()
|