123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- import tensorflow as tf
- from tensorflow import nn
- import numpy as np
- from IPython import embed
- import sys
- sys.path.append('../hostLib/')
- from hostLib.layers.conv2d import Conv2D as Conv2DFPGA
- from hostLib import load_op
- class FPGALibTest(tf.test.TestCase):
- def testDummyOp(self):
- input = [1337, 42, 2**31-1, -1]
- with self.session():
- result = load_op.op_lib.MyDummy(input=input)
- self.assertAllEqual(result, input)
- def testDummyOp100(self):
- with self.session():
- for i in range(100):
- input = [i+1, 42, 2**31-1, -1]
- result = load_op.op_lib.MyDummy(input=input)
- self.assertAllEqual(result, input)
- def testDummyOpBig(self):
- input = [i+1 for i in range(1024)]
- with self.session():
- result = load_op.op_lib.MyDummyBig(input=input)
- self.assertAllEqual(result, input)
- def testDummyOpBig100(self):
- with self.session():
- for i in range(100):
- input = [i*100+k+1 for k in range(1024)]
- result = load_op.op_lib.MyDummyBig(input=input)
- self.assertAllEqual(result, input)
- def testConv2DSingle(self):
- img = np.ndarray((228,228), dtype=float)
- img.fill(0)
- for a in range(228):
- for b in range(228):
- img[a][b] = (a)*228+(b)
- kernel = np.ndarray((5,5), dtype=float)
- kernel.fill(0)
- kernel[2][2] = 1
- input = tf.constant(np.expand_dims(img, (0, 3)), dtype=float)
- filter = tf.constant(np.expand_dims(kernel, (2, 3)), dtype=float)
- with self.session():
- ref = nn.convolution(input, filter)
- result = load_op.op_lib.MyConv2D(input=input, filter=filter)
- self.assertAllClose(result, ref)
- def testConv2DRandom(self):
- input = tf.random.uniform(shape=[1,228,228,1])
- filter = tf.random.uniform(shape=[5,5,1,1])
- with self.session():
- ref = nn.convolution(input, filter)
- result = load_op.op_lib.MyConv2D(input=input, filter=filter)
- self.assertAllClose(result, ref)
- def testConv2DMulti(self):
- input = tf.random.uniform(shape=[2,228,228,3])
- filter = tf.random.uniform(shape=[5,5,3,4])
- with self.session():
- ref = nn.convolution(input, filter)
- result = load_op.op_lib.MyConv2D(input=input, filter=filter)
- self.assertAllClose(result, ref)
- if __name__ == "__main__":
- tf.test.main()
|