This website works better with JavaScript
홈
탐색
도움말
가입하기
로그인
jm-hsa
/
tensorflow-fpga
의 미러
https://gogs.justprojects.de/Bachelor/tf-fpga
Watch
1
Star
0
포크
0
파일
이슈
0
위키
트리:
ad7cea006f
브랜치
태그
master
v0.3.0
v0.2.0
v0.1.0
tensorflow-f...
/
doku
/
analyse.md
analyse.md
1.1 KB
히스토리
Raw
Analyse
Definition Operator
Knoten in einem TF-Graphen
hat eine festgelegte Anzahl von Inputs und Outputs
nimmt Parameter aus Python entgegen
definiert Regeln für Backpropagation in Textform
Batchgrößen werden mit model.compile festgelegt
verarbeitet gesamte Batches
interne Operatoren nutzen CPU-Worker
Erstellung eines Operators
TF bietet eine Schnittstelle zum Einbinden eigener Operatoren
kann mit g++ oder bazel kompiliert werden
TF-includes sind im vorkompiliertem tensorflow Paket enthalten
beschränkter Zugriff auf Unterfunktionen interner Operationen
inputs können mit OP_REQUIRES eingeschränkt werden
Asynchrone Operatoren
werden wie synchrone OPs mit dem Model instanziiert
nutzen einen
done
-Callback, der 1x aufgerufen werden muss
parallele Stränge des Keras-Graphen werden gleichzeitig ausgeführt
standardmäßig werden nur 8 Operatoren gleichzeitig ausgeführt
neue Schicht wird erst begonnen, wenn alle Operatoren der vorherigen fertig sind
keine Vorteil den Datensatz einer Schicht auf mehrere OPs in Python aufzuteilen