12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- import tensorflow as tf
- import tensorflow.keras as keras
- from keras import layers
- from keras.layers import Input, Embedding, LSTM, Dense, Dropout, Flatten, MaxPooling2D, Conv2D
- from keras.models import Model, Sequential
- from keras.datasets import mnist
- from keras.utils import plot_model, to_categorical
- import numpy as np
- from IPython import embed
- batch_size = 128
- num_classes = 10
- epochs = 1 # 12
- # input image dimensions
- img_rows, img_cols = 28, 28
- # the data, split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
- x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
- input_shape = (img_rows, img_cols, 1)
- x_train = x_train.astype('float32')
- x_test = x_test.astype('float32')
- x_train /= 255
- x_test /= 255
- print('x_train shape:', x_train.shape)
- print(x_train.shape[0], 'train samples')
- print(x_test.shape[0], 'test samples')
- # convert class vectors to binary class matrices
- y_train = to_categorical(y_train, num_classes)
- y_test = to_categorical(y_test, num_classes)
- class Linear(layers.Layer):
- def __init__(self, units=32, input_dim=32):
- super(Linear, self).__init__()
- w_init = tf.random_normal_initializer()
- self.w = tf.Variable(initial_value=w_init(shape=(input_dim, units),
- dtype='float32'),
- trainable=True)
- b_init = tf.zeros_initializer()
- self.b = tf.Variable(initial_value=b_init(shape=(units,),
- dtype='float32'),
- trainable=True)
- def call(self, inputs):
- print(inputs)
- embed()
- return tf.matmul(inputs, self.w) + self.b
- model = Sequential()
- model.add(Conv2D(32, kernel_size=(3, 3),
- activation='relu',
- input_shape=input_shape))
- model.add(Conv2D(64, (3, 3), activation='relu'))
- model.add(MaxPooling2D(pool_size=(2, 2)))
- model.add(Dropout(0.25))
- model.add(Flatten())
- model.add(Dense(128, activation='relu'))
- model.add(Dropout(0.5))
- model.add(Dense(num_classes, activation='softmax'))
- model.add(Linear(10,10))
- model.compile(loss=keras.losses.categorical_crossentropy,
- optimizer=keras.optimizers.Adadelta(),
- metrics=['accuracy'])
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=epochs,
- verbose=1,
- validation_data=(x_test, y_test))
- score = model.evaluate(x_test, y_test, verbose=0)
- print('Test loss:', score[0])
- print('Test accuracy:', score[1])
- plot_model(model, to_file='model.png', expand_nested=True, show_shapes=True)
|