TensorFlow library for adding FPGA based layers
subDesTagesMitExtraKaese 6c468d4a7f enabled optimization flag | 4 éve | |
---|---|---|
c++ | 4 éve | |
doku | 4 éve | |
examples | 4 éve | |
hostLib | 4 éve | |
tests | 4 éve | |
.gitignore | 4 éve | |
.gitmodules | 4 éve | |
README.md | 4 éve | |
config.json | 4 éve |
hostLib/
Python wrapper module
layers/
Layer definitionsc++/
TensorFlow custom operator library
lib/mlfpga/
FPGA data transfer libraryimport tensorflow as tf
from tensorflow.keras import models
from hostLib.layers.conv2d import Conv2D as Conv2DFPGA
model = models.Sequential()
model.add(Conv2DFPGA(1))
clone repository and init submodules
git clone <this url>
cd ./tf-fpga
git submodule init
install dependencies (on Ubuntu Linux for example)
sudo apt update
sudo apt upgrade -y
sudo apt autoremove
sudo apt install python3 python3-pip
sudo python3 -m pip install --upgrade pip # update pip globally
python3 -m pip install tensorflow
install C++ compiler
sudo apt install g++
compile operator and fpga libraries
cd ./c++
./configure
make
> /usr/bin/g++ ... -o build/dummyBigOp.o src/dummyBigOp.cpp
> ...
> /usr/bin/g++ ... -o build/op_lib.so ...
update config.json
with your FPGA addresses defined in the VHDL design
{"fpgas": [
{
"ip": "192.168.1.33",
"port": 1234
},
{
"ip": "192.168.1.34",
"port": 1234
},
{
"ip": "192.168.1.35",
"port": 1234
}
]}
For more details on how to contribute to git projects see https://gist.github.com/MarcDiethelm/7303312.
add your FPGA module to the list of modules c++/lib/mlfpga/include/modules.hpp
then the MOD_DEF
macro creates these entries automagically:
moduleIds[Module::myNewModule];
moduleNames[Module::myNewModule];
moduleSendPayloadLength[Module::myNewModule];
moduleRecvPayloadLength[Module::myNewModule];
create a TF kernel implementation MyNewOp
inherited from AsyncOpKernel
, inside these files:
c++/src/myNewOp.cpp
and c++/include/myNewOp.hpp
define the constructor and overwrite the ComputeAsync
method:
class MyNewOp : public AsyncOpKernel {
public:
explicit MyNewOp(OpKernelConstruction* context);
void ComputeAsync(OpKernelContext* context, DoneCallback done) override;
}
using your FPGA module
auto worker = connectionManager.createWorker(Module::myNewModule, count);
register the the kernel with a custom operator:
c++/src/entrypoint.cpp
REGISTER_OP("MyNewOp")
.Input("input: float")
.Output("output: float")
.SetShapeFn([](InferenceContext* c) {
c->set_output(0, c->input(0));
return Status::OK();
});
;
REGISTER_KERNEL_BUILDER(Name("MyNewOp").Device(DEVICE_CPU), MyNewOp);
// the custom kernel class /\
c++/include/entrypoint.hpp
#include "myNewOp.hpp"
More information on creating custom TF kernels can be found here.
compile everything
cd ./c++
make clean
make
append a test for your operator
tests/op_test.py
def testMyNewOp(self):
with self.session():
input = [1,2,3]
result = load_op.op_lib.MyNewOp(input=input)
self.assertAllEqual(result, input)
add a custom layer that uses the operator
hostLib/layers/myNewLayer.py
class MyNewLayer(layers.Layer):
...
def call(self, inputs):
return load_op.op_lib.MyNewOp(input=inputs)
add that layer to the python module
hostLib/layers/__init__.py
__all__ = ["conv2d", "myNewLayer"]
There are tests for each complexity level of this project.
loopback test without connected FPGAs. This will only succeed for modules that have equal input and output lengths.
compile the UDP echo server and run it in a seperate terminal:
cd ./c++
make echo
./build/echo
edit config.json
:
{"fpgas": [
{
"ip": "localhost",
"port": 1234
}
]}
then run any dummy module test:
python3 tests/op_test.py
FPGA communication test c++/tests/main.cpp
cd ./c++
make test
./build/test
operator validation test, based on TFs test suite tests/op_test.py
python3 tests/op_test.py
./config.json
c++/build/op_lib.so
Used in examples: