
10.10.2018

1 / 36

🗃 Xcom-API

versionversion v1.0v1.0 pythonpython 3.4, 3.5, 3.63.4, 3.5, 3.6 licenselicense GNU GPL v3GNU GPL v3 documentationdocumentation wikiwiki downloaddownload zipzip

📜 Table of Contents

Introduction
Xcom-API-Class

Create and Delete an Object
Class-Attributes
Information-Methods

get_source_address
get_destination_address
is_crc_check_active
get_object_counter
get_prog_name
get_prog_version

Public-Class-Methods
get_read_frame
get_read_frame_ext
get_write_frame
get_write_frame_ext
get_data_from_frame
get_data_from_frame_ext
get_bin_from_frame_flags
get_text_from_frame_flags
get_text_from_error_id

Hardware Setup
Hardware Information
Xcom-232i-Setup
Raspberry Pi Setup

Copy Image to a SD-Card
Create your own Image

https://www.hs-anhalt.de/startseite.html
https://es-lab.de:60085/mueller_to/Xcom-API
https://www.python.org/
https://es-lab.de:60085/mueller_to/Xcom-API/src/master/LICENSE
https://es-lab.de:60085/mueller_to/Xcom-API/wiki
https://es-lab.de:60085/mueller_to/Xcom-API/archive/master.zip

10.10.2018

2 / 36

Test-Program
Run Test-Program
Xcom-Test-Loop-Program
Xcom-Test-Program

References

ℹ Introduction

Welcome to the Wiki of the Xcom-API. This project is about an API (Application Programming
Interface) designed as a python-class, which is used to encode and decode byte-frames for
communication between a Xtender-System and a PC, especially a Raspberry Pi with a Raspicomm
extension module. The class also contains methods for error and frame-flag decoding and methods
to get object or class informations.

Note: The API and the Test-Program was created with Microsoft's integrated development
environment (IDE) Visual Studio Code (VSC). This is an Open-Source IDE from Microsoft for
many different programming-languages for Windows, Linux and Mac with an easy to use git
integration. So you can easily add this project to VSC by cloning this Git-Repository. Of
course you can open the python-files with other IDE's you prefer too.

☁ Git-Repository-Link: https://es-lab.de:60085/mueller_to/Xcom-API

On the following pages you will find many informations about the usage of the API such like: An
explanation of the methods of the API and how to invoke these methods inside a python-script.

Furthermore there are test-programs called "Xcom-Test-Program" and "Xcom-Test-Loop-Program",
which you can use for testing the Xcom-API and where you get some impressions of how to use the
Xcom-API. There are also explanation for how to use these test-programs. This concerns the
hardware and software setup of the Raspberry Pi, if you won't use the given Raspberry Pi image.

🗃 Xcom-API-Class

This class is used to encode byte-frames, which are needed to communicate with Xtender-Modules
over the RS232-BUS with the help of the Xcom-232i. After encoding the byte-frame, you can use the
module "pyserial" to communicate with the Serial-BUS and to put the byte-frame into the write-
method of "pyserial". You can also decode read-frames of the Serial-BUS with this class.

The class contains methods to generate read- or write-frames, and methods to decode frames.
There are pre-defined types, properties and formats for the most important parameter- and
information-numbers. This reduces the effort for generating byte-frames, but there are extended
methods to encode byte-frames with other parameter- and information-numbers too, that you can
find in the documentation of the Xcom-232i. The class also contains methods for error and frame-
flag decoding and methods to get object or class informations

10.10.2018

3 / 36

Note: The link to the documentation of the Xcom-232i can you find under the section:
Hardware Information.

On the following sections, there will be describe the Information-Methods, Public-Class-Methods,
Class-Attributes and how to create and delete an object.

Create and Delete an Object

Import Xcom-API-Class:

To use the Xcom-API, either you need to import the class into your python-script, or you write your
code directly inside the "Xcom_API.py" file. If you want to import the "Xcom_API.py" into your own
python script, make sure, that the "Xcom_API.py" file is located inside the python-module search
path. This is either the folder/directory where your script is located or under Microsoft Windows the
path:

<drive>:\<install_path_to_python>\<python_folder_with_version>\Lib\site-
packages

for example:

C:\Program Files\Python34-64\Lib\site-packages

or under Linux the path:

/usr/local/lib/<python_folder_with_version>

for example:

/usr/local/lib/python3.4

To import the class use the python-code:

>>> # import module
>>> from Xcom_API import Xcom_API

or:

10.10.2018

4 / 36

>>> # import module
>>> from Xcom_API import *

Create an Object:

Now you are able to create an object of the Xcom-API-Class. For example with the code:

>>> # create object of the Xcom-API-Class
>>> object = Xcom_API()

If you create an object, the "__init__" method of the class will be called. It checks the passed
arguments and store them. There are predefined arguments for this object, if you generate an
objects without the relevant arguments, such like in the shown code-example before. The predefined
arguments are:

crc = True
source = 1
destination = 101

The "crc" value indicates, whether the CRC check for this object in active or not. The "source" value
indicates the address of the Xcom-232i, which is the CAN-RS232-Bridge. Normally the standard
address is "1", if you have only one Xcom-232i in your configuration. The "destination" value is the
address of the Xtender-Module, which you want to communicate with. If you want to change one or
more of these arguments, then change it's value. For example:

>>> # create object of the Xcom-API-Class with CRC-Check disable and
>>> # destination address = 103
>>> object = Xcom_API(crc=False,destination=103)

For each Xtender-Module you want to communicate with, you must create an own object for it. You
can't change any arguments after creating an object. This is a safety aspect, which prevents you
against confusing code, because each object represents a Xtender-Module. So make sure, that the
object name is well chosen.

Delete an Object:

To delete an object, just use the "del" expression.

>>> # delete an object
>>> del object

10.10.2018

5 / 36

This calls the "__del__" method of the class, which delete the object specific arguments such like:
"crc", "sourc

Class-Attributes

Class-Attributes are protected values, which are marked through an underscore "_" at the beginning
of the Attribute name. Protected means, that these attributes can be read out und used as an input
parameter for methods, but their value must not be changed. Otherwise the Xcom-API-Class will not
work correctly.

You can use/read out an attribute with the command:

>>> Xcom_API.<name_of_attribute>

for example:

>>> # Read out the number of an Info-Object_ID
>>> Xcom_API._info_battery_voltage
 3000

Object_Type

_object_type_info = 1
_object_type_parameter = 2
_object_type_message = 3
_object_type_datalog_field = 5
_object_type_datalog_transfer = 257

Info-Object_ID

_info_battery_voltage = 3000
_info_battery_temperature = 3001
_info_battery_charge_current = 3005
_info_battery_voltage_ripple = 3006
_info_state_of_charge = 3007
_info_number_of_battery_elements = 3050
_info_input_voltage = 3011
_info_input_current = 3012
_info_input_frequency = 3084
_info_input_power = 3138
_info_output_voltage = 3021

10.10.2018

6 / 36

_info_output_current = 3022
_info_output_frequency = 3085
_info_output_power = 3139
_info_operating_state = 3028
_info_boost_active = 3019
_info_state_of_inverter = 3049
_info_state_of_transfer_relay = 3020
_info_state_of_output_relay = 3030
_info_state_of_aux_relay_1 = 3031
_info_state_of_aux_relay_2 = 3032
_info_state_of_ground_relay = 3074
_info_state_of_neutral_transfer_relay = 3075
_info_state_of_remote_entry = 3086

Parameter-Object_ID

_para_maximum_current_of_ac_source = 1107
_para_battery_charge_current = 1138
_para_smart_boost_allowed = 1126
_para_inverter_allowed = 1124
_para_type_of_detection_of_grid_loss = 1552
_para_charger_allowed = 1125
_para_charger_uses_only_power_from_ac = 1646
_para_ac_output_voltage = 1286
_para_inverter_frequency = 1112
_para_transfer_relay_allowed = 1128
_para_limitation_of_the_power_boost = 1607
_para_remote_entry_active = 1545

Property_ID

_property_id_value = 1
_property_id_string = 1
_property_id_value_qsp = 5
_property_id_min_qsp = 6
_property_id_max_qsp = 7
_property_id_level_qsp = 8
_property_id_unsaved_value_qsp = 13
_property_id_invalid_Action = 0
_property_id_sd_start = 21
_property_id_sd_datablock = 22
_property_id_sd_ack_continue = 23
_property_id_sd_nack_retry = 24
_property_id_sd_abort = 25
_property_id_sd_finish = 26

10.10.2018

7 / 36

Format

_format_bool = [1,1]
_format_format = [2,2]
_format_short_int = [3,2]
_format_enum = [4,2]
_format_short_enum = [5,2]
_format_long_enum = [6,4]
_format_error = [7,2]
_format_int32 = [8,4]
_format_float = [9,4]
_format_byte = [10,1]

Information-Methods

The information methods provide the user with the opportunity to inform about the current object
properties and class information. The following methods can be used:

get_source_address
get_destination_address
is_crc_check_active
get_object_counter
get_prog_name
get_prog_version

get_source_address

Definition

def get_source_address(self):

Description

The "get_source_address" method is used to check the source address of an object. It returns an
integer value with it's source address.

Arguments

The "self" argument is pointing to the object, which calls the method.

Return Value

Type -> integer

10.10.2018

8 / 36

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # call the Method 'get_source_address'
>>> Src_Addr = Object.get_source_address()
>>>
>>> # print Src_Addr
>>> print(Src_Addr)
 1

get_destination_address

Definition

def get_destination_address(self):

Description

The "get_destination_address" method is used to check the destination address of an object. It
returns an integer value with it's destination address.

Arguments

The "self" argument is pointing to the object, which calls the method.

Return Value

Type -> integer

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # call the Method 'get_destination_address'
>>> Dest_Addr = Object.get_destination_address()
>>>
>>> # print Dest_Addr
>>> print(Dest_Addr)
 101

10.10.2018

9 / 36

is_crc_check_active

Definition

def is_crc_check_active(self):

Description

The "is_crc_check_active" method is used to check whether the CRC-Check is activated or not. It
returns a boolean value with the status of the CRC-Check. If CRC-Check is "False", the
get_data_from_frame, get_data_from_frame_ext and get_bin_from_frame_flags methods will not do
an CRC-Check before the frame will be decoded.

Arguments

The "self" argument is pointing to the object, which calls the method.

Return Value

Type -> boolean

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # call the Method 'is_crc_check_active'
>>> CRC_Active = Object.is_crc_check_active()
>>>
>>> # print CRC_Active
>>> print(CRC_Active)
 True

get_object_counter

Definition

def get_object_counter():

Description

10.10.2018

10 / 36

The "get_object_counter" method is used to check the number of objects. It returns an integer value
of the counter. This method can be called with and without a created object.

Arguments

None

Return Value

Type -> integer

Example Code

>>> # call the Method 'get_object_counter'
>>> Obj_Count = Xcom_API.get_object_counter()
>>>
>>> # print Obj_Count
>>> print(Obj_Count)
 0
>>>
>>> # create an object of the Xcom-API-Class
>>> Object1 = Xcom_API(destination=102)
>>>
>>> # call the Method 'get_object_counter'
>>> Obj_Count = Object1.get_object_counter()
>>>
>>> # print Obj_Count
>>> print(Obj_Count)
 1
>>>
>>> # create another object of the Xcom-API-Class
>>> Object2 = Xcom_API(destination=103)
>>>
>>> # call the Method 'get_object_counter'
>>> Obj_Count = Xcom_API.get_object_counter()
>>>
>>> # print Obj_Count
>>> print(Obj_Count)
 2
>>>
>>> # delete objects
>>> del Object1
>>> del Object2
>>>
>>> # call the Method 'get_object_counter'
>>> Obj_Count = Xcom_API.get_object_counter()
>>>
>>> # print Obj_Count

10.10.2018

11 / 36

>>> print(Obj_Count)
 0

get_prog_name

Definition

def get_prog_name():

Description

The "get_prog_name" method is used to return the API name. This method can be called with and
without a created object.

Arguments

None

Return Value

Type -> string

Example Code

>>> # call the Method 'get_prog_name'
>>> Obj_Name = Xcom_API.get_prog_name()
>>>
>>> # print Obj_Name
>>> print(Obj_Name)
 'Xcom_API'
>>>
>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # call the Method 'get_prog_name'
>>> Obj_Name = Object.get_prog_name()
>>>
>>> # print Obj_Name
>>> print(Obj_Name)
 'Xcom_API'

get_prog_version

10.10.2018

12 / 36

Definition

def get_prog_version():

Description

The "get_prog_version" method is used to return the version of the API. This method can be called
with and without a created object.

Arguments

None

Return Value

Type -> string

Example Code

>>> # call the Method 'get_prog_version
>>> Obj_Version = Xcom_API.get_prog_version()
>>>
>>> # print Obj_Version
>>> print(Obj_Version)
 'v1.0'
>>>
>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # call the Method 'get_prog_version'
>>> Obj_Version = Object.get_prog_version()
>>>
>>> # print Obj_Version
>>> print(Obj_Version)
 'v1.0'

Public-Class-Methods

The Public-Class-Methods are used to encode and decode byte-frames. There are also Private-
Class-Methods of the API, but they are only used inside the API for internal instructions and they are
not available for the user. So the Private-Class-Methods will not be further described. The Public-
Class-Methods are:

get_read_frame
get_read_frame_ext

10.10.2018

13 / 36

get_write_frame
get_write_frame_ext
get_data_from_frame
get_data_from_frame_ext
get_bin_from_frame_flags
get_text_from_frame_flags
get_text_from_error_id

There are Methods either to encode 'read' or 'write' byte-frames and there are Methods to decode
byte-frames. Furthermore there are also Methods to decode frame-flags and error-id as well.

The non extended methods, these are methods without an '_ext' expression inside the method
names, can only be used with a known Object_ID, which are listed in the section Class-Attributes.
These known Object_IDs contains info and parameter numbers, which are often used. So you can
easily encode and decode byte-frames without the need to know of the background informations of
the byte-frame structure.

If you want to encode and decode byte-frames with other Object-IDs, you must used the extended
methods. To use these Methods, you need background informations of the byte-frame structure,
wich are well explained in the technical documentation of the Xcom-232i. Otherwise the Xtender-
System will possibly not understand the byte-frame and will send you an error.

Note: The link to the documentation of the Xcom-232i can you find under the section:
Hardware Information.

get_read_frame

Definition

def get_read_frame(self, object_id):

Description

The "get_read_frame" method is used to encode a byte-frame for a 'read'-instruction. It can only be
used with a known Object_ID, otherwise it will raise a Value_Error. It returns a bytearray of the
frame.

Arguments

The "self" argument is pointing to the object, which calls the method.

The "object_id" is an info or parameter number, which you want to read out.

Info-Object_ID:

10.10.2018

14 / 36

_info_battery_voltage = 3000
_info_battery_temperature = 3001
_info_battery_charge_current = 3005
_info_battery_voltage_ripple = 3006
_info_state_of_charge = 3007
_info_number_of_battery_elements = 3050
_info_input_voltage = 3011
_info_input_current = 3012
_info_input_frequency = 3084
_info_input_power = 3138
_info_output_voltage = 3021
_info_output_current = 3022
_info_output_frequency = 3085
_info_output_power = 3139
_info_operating_state = 3028
_info_boost_active = 3019
_info_state_of_inverter = 3049
_info_state_of_transfer_relay = 3020
_info_state_of_output_relay = 3030
_info_state_of_aux_relay_1 = 3031
_info_state_of_aux_relay_2 = 3032
_info_state_of_ground_relay = 3074
_info_state_of_neutral_transfer_relay = 3075
_info_state_of_remote_entry = 3086

Parameter-Object_ID:

_para_maximum_current_of_ac_source = 1107
_para_battery_charge_current = 1138
_para_smart_boost_allowed = 1126
_para_inverter_allowed = 1124
_para_type_of_detection_of_grid_loss = 1552
_para_charger_allowed = 1125
_para_charger_uses_only_power_from_ac = 1646
_para_ac_output_voltage = 1286
_para_inverter_frequency = 1112
_para_transfer_relay_allowed = 1128
_para_limitation_of_the_power_boost = 1607
_para_remote_entry_active = 1545

Return Value

Type -> bytearray

Example Code

10.10.2018

15 / 36

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # call the Method 'get_read_frame'
>>> Byte_Frame = Object.get_read_frame(Xcom_API._info_battery_voltage)
>>>
>>> # print Byte_Frame
>>> print(Byte_Frame)

bytearray(b'\\xAA\\x00\\x01\\x00\\x00\\x00\\x65\\x00\\x00\\x00\\x0A\\x00\\
x6F\\x71\\x00\\x01\\x01\\x00\\xB8\\x0B\\x00\\x00\\x01\\x00\\xC5\\x90')

get_read_frame_ext

Definition

def get_read_frame_ext(self, object_type, object_id, property_id):

Description

The "get_read_frame_ext" method is used to encode a byte-frame for a 'read'-instruction with other
Object_IDs listed in the technical documentation of the Xcom-232i. It returns a bytearray of the
frame.

Note: The link to the documentation of the Xcom-232i can you find under the section:
Hardware Information.

Arguments

The "self" argument is pointing to the object, which calls the method.

The "object_type" indicates the type of the "object_id", whether it is for example an info or a
parameter number.

Object_Type:

_object_type_info = 1
_object_type_parameter = 2
_object_type_message = 3
_object_type_datalog_field = 5
_object_type_datalog_transfer = 257

The "object_id" is an info or parameter number, which you want to read out.

10.10.2018

16 / 36

The "property_id" identifies the property of the data, which should be read out.

Property_ID:

_property_id_value = 1
_property_id_string = 1
_property_id_value_qsp = 5
_property_id_min_qsp = 6
_property_id_max_qsp = 7
_property_id_level_qsp = 8
_property_id_unsaved_value_qsp = 13
_property_id_invalid_Action = 0
_property_id_sd_start = 21
_property_id_sd_datablock = 22
_property_id_sd_ack_continue = 23
_property_id_sd_nack_retry = 24
_property_id_sd_abort = 25
_property_id_sd_finish = 26

Return Value

Type -> bytearray

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # set an Object_ID, which should be read out
>>> input_current = 3116
>>>
>>> # call the Method 'get_read_frame_ext'
>>> Byte_Frame = Object.get_read_frame_ext(Xcom_API._object_type_info,
input_current, Xcom_API._property_id_value)
>>>
>>> # print Byte_Frame
>>> print(Byte_Frame)

bytearray(b'\\xAA\\x00\\x01\\x00\\x00\\x00\\x65\\x00\\x00\\x00\\x0A\\x00\\
x6F\\x71\\x00\\x01\\x01\\x00\\x2C\\x0C\\x00\\x00\\x01\\x00\\x3A\\x4D')

get_write_frame

Definition

10.10.2018

17 / 36

def get_write_frame(self, object_id, property_data):

Description

The "get_write_frame" method is used to encode a byte-frame for a 'write'-instruction. It can only be
used with a known Object_ID, otherwise it will raise a Value_Error. It returns a bytearray of the
frame.

Arguments

The "self" argument is pointing to the object, which calls the method.

The "object_id" is a parameter number, whose value you want to change.

Parameter-Object_ID:

_para_maximum_current_of_ac_source = 1107
_para_battery_charge_current = 1138
_para_smart_boost_allowed = 1126
_para_inverter_allowed = 1124
_para_type_of_detection_of_grid_loss = 1552
_para_charger_allowed = 1125
_para_charger_uses_only_power_from_ac = 1646
_para_ac_output_voltage = 1286
_para_inverter_frequency = 1112
_para_transfer_relay_allowed = 1128
_para_limitation_of_the_power_boost = 1607
_para_remote_entry_active = 1545

The "property_data" is the value, you want to send.

Return Value

Type -> bytearray

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # create a variable with a value for the Property_Data
>>> Data_in_Ampere = 32.0
>>>
>>> # call the Method 'get_write_frame'
>>> Byte_Frame =

10.10.2018

18 / 36

Object.get_write_frame(Xcom_API._para_maximum_current_of_ac_source,
Data_in_Ampere)
>>>
>>> # print Byte_Frame
>>> print(Byte_Frame)

bytearray(b'\\xAA\\x00\\x01\\x00\\x00\\x00\\x65\\x00\\x00\\x00\\x0E\\x00\\
x73\\x79\\x00\\x02\\x02\\x00\\x53\\x04\\x00\\x00\\x05\\x00\\x00\\x00\\x00\
\x42\\xA1\\xE6')

get_write_frame_ext

Definition

def get_write_frame_ext(self, object_type, object_id, property_id,
property_data, data_format):

Description

The "get_write_frame_ext" method is used to encode a byte-frame for a 'write'-instruction with other
Object_IDs listed in the technical documentation of the Xcom-232i. It returns a bytearray of the
frame.

Note: The link to the documentation of the Xcom-232i can you find under the section:
Hardware Information.

Arguments

The "self" argument is pointing to the object, which calls the method.

The "object_type" indicates the type of the "object_id", whether it is for example an info or a
parameter number.

Object_Type:

_object_type_info = 1
_object_type_parameter = 2
_object_type_message = 3
_object_type_datalog_field = 5
_object_type_datalog_transfer = 257

The "object_id" is a parameter number, whose value you want to change.

The "property_id" identifies the property of the data, which should be change.

10.10.2018

19 / 36

Property_ID:

_property_id_value = 1
_property_id_string = 1
_property_id_value_qsp = 5
_property_id_min_qsp = 6
_property_id_max_qsp = 7
_property_id_level_qsp = 8
_property_id_unsaved_value_qsp = 13
_property_id_invalid_Action = 0
_property_id_sd_start = 21
_property_id_sd_datablock = 22
_property_id_sd_ack_continue = 23
_property_id_sd_nack_retry = 24
_property_id_sd_abort = 25
_property_id_sd_finish = 26

The "property_data" is the value, you want to send.

The "data_format" described the format of the "property_data".

Format:

_format_bool = [1,1]
_format_format = [2,2]
_format_short_int = [3,2]
_format_enum = [4,2]
_format_short_enum = [5,2]
_format_long_enum = [6,4]
_format_error = [7,2]
_format_int32 = [8,4]
_format_float = [9,4]
_format_byte = [10,1]

Return Value

Type -> bytearray

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # set an Object_ID, whose value should be change
>>> Equalization_current = 1290
>>>

10.10.2018

20 / 36

>>> # create a variable with a value for the Property_Data
>>> Data_in_Ampere = 120.0
>>>
>>> # call the Method 'get_write_frame_ext'
>>> Byte_Frame =
Object.get_write_frame_ext(Xcom_API._object_type_parameter,
Equalization_current, Xcom_API._property_id_value, Data_in_Ampere,
Xcom_API._format_float)
>>>
>>> # print Byte_Frame
>>> print(Byte_Frame)

bytearray(b'\\xAA\\x00\\x01\\x00\\x00\\x00\\x65\\x00\\x00\\x00\\x0E\\x00\\
x73\\x79\\x00\\x02\\x02\\x00\\x0A\\x05\\x00\\x00\\x01\\x00\\x00\\x00\\xF0\
\x42\\x45\\xDD')

get_data_from_frame

Definition

def get_data_from_frame(self, bytearray_of_frame):

Description

The "get_data_from_frame" method is used to decode data from the received byte-frame, what you
get from the Xtender-System. If CRC-Check is active, it will check the byte-frame and raises a
Value_Error, if a CRC-Error was detected. It can only be used with a known Object_ID, otherwise it
will raise a Value-Error. This method return a list with two elements. The first is a boolean value,
which is true, if the xtender-system detects an error and the second element of the list then contains
the error-id. If no error occures, then the first element is false und the second element contains the
answer of your request. The returned value of the second element is a string, integer or float,
depending of the service (read/write) of the request frame and of the format of the received
Property_Data.

Arguments

The "self" argument is pointing to the object, which calls the method.

The "bytearray_of_frame" argument is the frame what you get, when you receive data from the serial
port.

Return Value

Type -> list

10.10.2018

21 / 36

list[0]: Type -> boolean

list[1]: Type -> depending of the service (read/write) of the request frame and of the format of the
received Property_Data

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # create a variable with a received frame
>>> Frame =
bytearray(b'\\xAA\\x37\\x65\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x0E\\x00\\
xAA\\x66\\x02\\x01\\x01\\x00\\xB8\\x0B\\x00\\x00\\x01\\x00\\x00\\x40\\x42\
\x42\\x8B\\x46')
>>>
>>> # call the Method 'get_data_from_frame'
>>> Answer = Object.get_data_from_frame(Frame)
>>>
>>> # print Answer
>>> print(Answer)
 (False, 48.5625)

get_data_from_frame_ext

Definition

def get_data_from_frame_ext(self, bytearray_of_frame, data_format):

Description

The "get_data_from_frame_ext" method is used to decode data from the received byte-frame, what
you get from the Xtender-System. If CRC-Check is active, it will check the byte-frame and raises a
Value_Error, if a CRC-Error was detected. This method return a list with two elements. The first is a
boolean value, which is true, if the xtender-system detects an error and the second element of the
list then contains the error-id. If no error occures, then the first element is false und the second
element contains the answer of your request. The returned value of the second element is a string,
integer or float, depending of the service (read/write) of the request frame and of the format of the
received Property_Data.

Arguments

The "self" argument is pointing to the object, which calls the method.

10.10.2018

22 / 36

The "bytearray_of_frame" argument is the frame what you get, when you receive data from the serial
port.

The "data_format" described the format of the received Property_Data.

Format:

_format_bool = [1,1]
_format_format = [2,2]
_format_short_int = [3,2]
_format_enum = [4,2]
_format_short_enum = [5,2]
_format_long_enum = [6,4]
_format_error = [7,2]
_format_int32 = [8,4]
_format_float = [9,4]
_format_byte = [10,1]

Return Value

Type -> list

list[0]: Type -> boolean

list[1]: Type -> depending of the service (read/write) of the request frame and of the format of the
received Property_Data

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # create a variable with a received frame
>>> Frame =
bytearray(b'\\xAA\\x37\\x65\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x0E\\x00\\
xAA\\x66\\x02\\x01\\x02\\x00\\x53\\x04\\x00\\x00\\x05\\x00\\x00\\xD0\\x14\
\x42\\x86\\x8D')
>>>
>>> # call the Method 'get_data_from_frame_ext'
>>> Answer = Object.get_data_from_frame_ext(Frame, Xcom_API._format_float)
>>>
>>> # print Answer
>>> print(Answer)
 (False, 37.203125)

get_bin_from_frame_flags

10.10.2018

23 / 36

Definition

def get_bin_from_frame_flags(self, bytearray_of_frame):

Description

The "get_bin_from_frame_flags" method is used to return the frame-flags as a binary. If CRC-Check
is active, it will check the byte-frame and raises a Value_Error, if a CRC-Error was detected.

Arguments

The "self" argument is pointing to the object, which calls the method.

The "bytearray_of_frame" argument is the frame what you get, when you receive data from the serial
port.

Return Value

Type -> string(binary)

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # create a variable with a received frame
>>> Frame =
bytearray(b'\\xAA\\x37\\x65\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x0E\\x00\\
xAA\\x66\\x02\\x01\\x01\\x00\\xB8\\x0B\\x00\\x00\\x01\\x00\\x00\\x40\\x42\
\x42\\x8B\\x46')
>>>
>>> # call the Method 'get_bin_from_frame_flags'
>>> Answer = Object.get_bin_from_frame_flags(Frame)
>>>
>>> # print Answer
>>> print(Answer)
 '0b00110111'

get_text_from_frame_flags

Definition

def get_text_from_frame_flags(self, bytearray_of_frame):

10.10.2018

24 / 36

Description

The "get_text_from_frame_flags" method is used to return the frame-flags as a list with explanation
(string) for each bit, starting with lsb. If CRC-Check is active, it will check the byte-frame and raises a
Value_Error, if a CRC-Error was detected.

Arguments

The "self" argument is pointing to the object, which calls the method.

The "bytearray_of_frame" argument is the frame what you get, when you receive data from the serial
port.

Return Value

Type -> list

list[0:5]: Type -> string

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # create a variable with a received frame
>>> Frame =
bytearray(b'\\xAA\\x37\\x65\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x0E\\x00\\
xAA\\x66\\x02\\x01\\x01\\x00\\xB8\\x0B\\x00\\x00\\x01\\x00\\x00\\x40\\x42\
\x42\\x8B\\x46')
>>>
>>> # call the Method 'get_text_from_frame_flags'
>>> Answer = Object.get_text_from_frame_flags(Frame)
>>>
>>> # print Answer
>>> print(Answer)
 ('Messages are pending.','A reset or restart was carried out.','The
SD-Card is present.','The SD-Card is not full.','New datalog file on the
SD-Card.','Datalogger is supported.')

get_text_from_error_id

Definition

def get_text_from_error_id(self, error_id):

10.10.2018

25 / 36

Description

The "get_text_from_error_id" method is used to get the error message from the "error_id".

Arguments

The "self" argument is pointing to the object, which calls the method.

The "error_id" argument is an integer value send from the Xtender-system.

Return Value

Type -> string

Example Code

>>> # create an object of the Xcom-API-Class
>>> Object = Xcom_API()
>>>
>>> # create a variable with an Error_ID
>>> Error_ID = 0x0022
>>>
>>> # call the Method 'get_text_from_error_id'
>>> Answer = Object.get_text_from_error_id(Error_ID)
>>>
>>> # print Answer
>>> print(Answer)
 'OBJECT_ID_NOT_FOUND'

💻 Hardware Setup

This section explains the hardware configuration, which is necessary to use the test-programs. The
test-programs were designed especially for using a Raspberry Pi with the RaspiComm module. Of
course the Xcom-API-Class itself can be used in own programs with other distributions and
plattforms, which can run python code. The chart below shows the connection of the hardware.

The Raspberry Pi is used to execute the test-program and with the help of the RaspiComm module
is a RS232 connection to the Xcom-232i ensue. The Xcom-232i is a bridge betwenn the RS232
serial-Bus and the CAN-BUS, which handles the communication between the Xtender-System.

https://yuml.me/edit/cdb71477

10.10.2018

26 / 36

In the following sections you will get hardware-information and setup descriptions for the Raspberry
Pi and the Xcom-232i.

Hardware Information

The following table shows the needed hardware components and their usage and give you links to
the product information and documentation. These components are necessary if you want to use the
Xcom-Test-Program and Xcom-Test-Loop-Program.

Component Function
Product

Information
Documentation

Raspberry
Pi 3

single board computer, on which is running
the program

🔗 🔗

RasPiComm
expansion board for the Raspberry Pi, which
provides a RS232-Port over the GPIOs
(UART) of the Raspberry Pi

Product is
EOL

Product is EOL

Xcom-232i
CAN to RS232 Bridge, which is used to
communicate with the Xtender-Modules

🔗
🔗

🔗

RCC-02
remote control and programming unit for
displaying the status informations and to
program parameters of the Xtender-Modules

🔗 🔗

Xtender-
Series

is used as Battery charger and as DC to AC
converter and to supply electrical power

🔗 🔗

Xcom-232i-Setup

The Xcom-232i is a bridge for the RS232-BUS to the CAN-BUS. The test-programms for the Xcom-
API-Class will ask you for the baudrate. So it is essential, that you know the baudrate of the Xcom-
232i, otherwise the communication between the Raspberry Pi and the Xcom-232i will fails. The
standard baudrate for the RS232-BUS is 38400, but you are able to change this value to 115200. To
do that you need the Xcom-Configurator, which is only available for a windows operating system.

Download-Link Xcom-Configurator: https://www.studer-
innotec.com/media/document/0/xcomconfiguratorsetup_1.0.26.0.zip

The picture below shows the Xcom-Configurator program.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/documentation/
https://www.studer-innotec.com/en/accessoires/xtender-series/communication-module-xcom-232i-770
https://www.studer-innotec.com/media/document/0/studer-manuel-xcom-232i-v1.3.0_en.pdf
https://www.studer-innotec.com/media/document/0/technical-specification-xtender-serial-protocol-v1.6.24.zip
https://www.studer-innotec.com/en/accessoires/xtender-series/rcc-02-remote-control-and-programming-centre-767
https://www.studer-innotec.com/media/document/0/manuel-rcc-v4.6.0_en.pdf
https://www.studer-innotec.com/en/products/xtender-series/
https://www.studer-innotec.com/media/document/0/manuel-xtender-v4.7.0_en-1.pdf
https://www.studer-innotec.com/media/document/0/xcomconfiguratorsetup_1.0.26.0.zip

10.10.2018

27 / 36

After downloading and installing the Xcom-Configurator, you are able to change the baudrate:

Remove the Micro-SD-card from the Xcom-232i and insert it into your PC.

Start the Xcom-Configurator.

Choose the SD-Card-Drive, where the SD-Card of Xcom-232i is located.

Choose a Xcom-Mode, which is either "232i (38400 bps)" or "232i (115200 bps)".

Finally click on the "Generate" button and a new configuration-file will be stored on the SD-
Card.

Remove the SD-Card from the PC and insert it into the Xcom-232i.

The LED of the Xcom-232i should be now blinking red. This indicates, that the Xcom-232i is
updating. The update is finish, when the LED is blinking green. The baudrate of the Xcom-
232i is now set.

Note: More Informations about the LED-state can you find in the documentation of the Xcom-
232i under the section: Hardware Information.

Raspberry Pi Setup

This section describes how to setup your Raspberry Pi, so that you are able to execute the test-
programs. There are two ways possible: either you use the given Raspberry Pi image-file, which is
ready to use, or you configure your own Raspberry Pi distribution/image.

10.10.2018

28 / 36

Copy Image to a SD-Card

This section describes how to copy the given Raspberry PI image-file to a SD-card. There is a Linux
and a Windows instruction available.

Download-Link Raspberry Pi Image-File: https://es-lab.de:60085/mueller_to/Xcom-
API/src/master/Raspberry-Pi-Image

Linux Instruction

After downloading you need to unzip the image-file first, which can be done for example with the
bash-command:

unzip Raspberry_Pi_Image.zip -d <destination_folder>

If "unzip" is not installed, you can install it with the bash-command:

sudo apt-get install unzip

Copying the image-file to a SD-Card will be done with the dd command.

Note: Use of the dd tool can overwrite any partition of your machine. If you specify the wrong
device in the instructions below, you could delete your primary Linux partition. Please be
careful.

Insert a SD-Card into your computer with at least 8 GB storage capacity.
Run the bash-command:

bash df -h

The left column of the results from df -h command gives the device name of your SD card. It
will be listed as something like /dev/mmcblk0p1 or /dev/sdX1, where "X" is a lower case
letter indicating the device. The last part (p1 or 1 respectively) is the partition number. You
want to write to the whole SD card, not just one partition. You therefore need to remove that
section from the name. You should see something like /dev/mmcblk0 or /dev/sdX as the
device name for the whole SD card. Note that the SD card can show up more than once in the
output of df. It will do this if you have previously written a Raspberry Pi image to this SD card,
because the Raspberry Pi SD images have more than one partition.

Now you have noted the device name, you need to unmount it so that files can't be read or
written to the SD card while you are copying over the SD image. So run the bash-command
umount /dev/sdX1, replacing sdX1 with whatever your SD card's device name is, including

https://es-lab.de:60085/mueller_to/Xcom-API/src/master/Raspberry-Pi-Image

10.10.2018

29 / 36

the partition number. If your SD card shows up more than once in the output of df, this shows
that the card has multiple partitions. You should unmount all of these partitions.

Now in a terminal window, write the image to the card with the command below, making sure
you replace the input file if= argument with the path to your img file, and the /dev/sdX in the
output file of= argument with the correct device name. This is very important, as you will lose
all the data on the hard drive if you provide the wrong device name. Make sure the device
name is the name of the whole SD card as described above, not just a partition. For example:
sdd, not sdds1 or sddp1, and mmcblk0, not mmcblk0p1.

dd bs=4M if=Raspberry_Pi_Image.img of=/dev/mmcblk0 conv=fsync

Note: The block size set to 4M will work most of the time. If not, try 1M, although this will take
considerably longer. Also note that if you are not logged in as root you will need to prefix this
with sudo.

After copying the image-file to the SD-Card, you can insert the SD-Card to your Raspberry Pi
and boot it up [1].

Login-informations:
 Username: pi
 Password: iotraspi

The test-programs can you find under /home/pi/pythonapps.

Note: DHCP for the ethernet port of the Raspberry Pi has been disabled. The static ip-
address is: 192.168.137.2. You can change this by opening the file /etc/dhcpcd.conf with
an editor like "nano" and with admin privilege.

Windows Instruction

After downloading the image-file, you can unzip the archive with windows itself or with a third party
tool like "7-ZIP".

Download-Link 7-ZIP: http://www.7-zip.de/

Now you need a tool called "Win32DiskImager" to copy the image-file to a SD-Card.

Download-Link Win32DiskImager: https://sourceforge.net/projects/win32diskimager/

The picture below shows the "Win32DiskImager".

http://www.7-zip.de/
https://sourceforge.net/projects/win32diskimager/

10.10.2018

30 / 36

Insert a SD-Card into your computer with at least 8 GB storage capacity.

In "Win32DiskImager" choose the image-file and the drive of your SD-Card.

Click on the button write (at the picture the german word "schreiben") to copy the image-file to
the SD-Card.

After copying the image-file to the SD-Card, you can insert the SD-Card to your Raspberry Pi
and boot it up

Login-informations:
 Username: pi
 Password: iotraspi

The test-programs can you find under /home/pi/pythonapps.

Note: DHCP for the ethernet port of the Raspberry Pi has been disabled. The static ip-
address is: 192.168.137.2. You can change this by opening the file /etc/dhcpcd.conf with
an editor like "nano" and with admin privilege.

Create your own Image

Sometimes it is necessary, that you create your own image-file. For Example: If you want to use a
newer or another Raspberry Pi Linux-Version as the given Raspberry Pi image-file. To do so, you
need to do some configurations at the fresh installation of the Raspberry Pi operating system. The
first step is to download your favorite Linux operating system for the Raspberry Pi and to install the
image file to a SD-Card. This is the same procedure, which was explained in section: Copy Image to
a SD-Card.

Note: Other Linux operating systems especially for the Raspberry Pi can you find under:
https://www.raspberrypi.org/downloads/

10.10.2018

31 / 36

To setup your own raspberry pi image-file is classified into the following steps:

Raspberry Pi Config
Activate UART (Raspberry Pi 3 only)
Install Python-Packages
Activate PiGPIO-Daemon

After completing the setup of your Raspberry Pi Image you can download the API and the test-
programs from the repository and test it.

Raspberry Pi Config

After booting up your Raspberry Pi you need to activate the serial port. If you want to communicate
with the Pi over ethernet, you also need to activate SSH. To do so, run the bash-command:

sudo raspi-config

The picture below shows the raspi-config.

Under the category "Interfacing-Options" you can activate SSH and the serial-port. If you want, you
can also do changes at the localization, hostname, etc. or you can activate other interfaces you need
[2].

Activate UART

Note: This step is only necessary, if you use a Raspberry Pi 3.

The biggest change of Raspberry Pi 3 was the integrated WLAN and Bluetooth. But the Bluetooth
module uses the serial (UART) interface of the Pi. So after activating the serial interface with raspi-
config, there only a Mini-UART available over the GPIO pins. The Mini-UART has a big
disatvantage: the baudrate of the Mini-UART depends of the Clock-Speed of the CPU, so a stable
serial connection is not possible. You can change that by disabling the Bluetooth module and
reconfigure the UART to the GPIO pins.

Open the "config.txt" at the boot directory with admin privilege.

10.10.2018

32 / 36

sudo nano /boot/config.txt

Add a new line with dtoverlay=pi3-disable-bt and if it is not set by raspi-config, add a line
with enable_uart=1 [3]. Now open the file:

sudo nano /boot/cmdline.txt

Delete the part with console=serial0,115200 [4]. Now you need to stop BT modem trying to use
UART:

sudo systemctl disable hciuart

After a reboot, the UART should work like at the previous Raspberry Pi version. The UART is
available under "/dev/ttyAMA0".

Install Python-Packages

The test-programs needs the following python-modules:

ptvsd
serial (pyserial)
pigpio

You can check, whether these modules are available with the bash-command:

pip3 list

If one of these modules are missing, you can install it with the bash-command:

pip3 install <module-name>

Activate PiGPIO-Daemon

The test-programs uses PiGPIO to access the GPIO pins. The PiGPIO module needs a daemon-
process, which handles the communication between GPIOs and the module [5]. You can start the
daemon-process with:

sudo pigpiod

10.10.2018

33 / 36

If you want to start the daemon-process with every bootup of the Raspberry pi, you need to open the
rc.local:

sudo nano /etc/rc.local

There you add a line with pigpiod before exit 0. The file should be look like:

#!/bin/sh -e

rc.local

This script is executed at the end of each multiuser runlevel.
Make sure that the script will "exit 0" on success or any other
value on error.

In order to enable or disable this script just change the execution
bits.

By default this script does nothing.

Print the IP address
_IP=$(hostname -I) || true
if ["$_IP"]; then
 printf "My IP address is %s\n" "$_IP"
fi

pigpiod

exit 0

⁉ Test-Program

The test-programs demonstrate the functionality of the Xcom_API-class. To use these programs a
Raspberry Pi with a Raspicomm extender module and a RS232-bridge called Xcom-232i is required.
Make sure you have setup your Raspberry Pi correctly, just like explained in section Hardware Setup
or you use the available Image-File of the Raspberry Pi, where everything is ready configured.

There are two test-programs available:

Xcom-Test-Loop-Program
Xcom-Test-Program

10.10.2018

34 / 36

In the following sections, there will be described these programs and explained how to run these
programs.

Run Test-Program

To run the test-programs make sure, that the Xcom_API.py is inside the python search-path. More
Informations about that can you find in section: Create and Delete an Object. The test-programs
needs the following python-modules:

ptvsd
serial (pyserial)
pigpio

You can check, whether these modules are available with the bash-command:

pip3 list

If one of these modules are missing, you can install it with the bash-command:

pip3 install <module-name>

You can start the test-program with the bash-command:

python3 <program-name>.py

The "<program-name>" should be either "Xcom_Test_Loop_Program" or "Xcom_Test_Program".
After starting one of these test-programs, it will start the program-setup and will ask you for some
initialize parameters. These are:

COM-Port (Normally: /dev/ttyAMA0)
Baudrate (depends on your Xcom-232i setup)
Destination-Address (Xtender-Module)
Soure-Address (Normally your-Raspberry Pi: 1)
CRC-Check (True/1 or False/0)

You can skip the program-setup by starting the test-program with the mentioned parameters. The
sequence of the parameters must not be changed. For example:

python3 <program-name>.py /dev/ttyAMA0 115200 101 1 True

10.10.2018

35 / 36

If everything is ok, you are now inside the main menu of the test-program and you can follow the
instructions, which are displayed.

Xcom-Test-Loop-Program

The Xcom-Test-Loop-Program sends cyclical a request to a Xtender-System and display whose
answer. After starting the Xcom-Test-Loop-Program and after finishing the program-setup, you need
to enter an Object-ID, which is used to encode the request-frame with the method "get_read_frame".
The Object_IDs are mentioned under section: Class-Attributes. Then the test-program sends the
request and receive the answer over the serial connection. The answer will be decode with the
method "get_data_from_frame" and displayed. The loop of the test-program run as fast as possible
and is limited by the transfer speed of the serial connection and of the CAN-BUS load.

Xcom-Test-Program

This program demonstrate the functionality of the Xcom_API-class. After starting the Xcom-Test-
Program and after finishing the program-setup, you can either enter an Information-Method to test
their functionallity or you enter a function, which demonstrate the functionallity of the Public-Class-
Methods. The Xcom-Test-Program is user-friendly designed, so you only need to follow the
displayed instructions.

Note: If you want to use the function, which uses the extended Public-Class-Methods, you
will need background informations of the byte-frame structure, which are well explained in the
technical documentation of the Xcom-232i. Otherwise the Xtender-System or the program will
not understand you and will display an error. The link to the documentation of the Xcom-232i
can you find under the section: Hardware Information.

📚 References

 [1] Raspberry Pi
 Installing operating system images on Linux
 https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
(20/08/2017)

 [2] Raspberry Pi
 Raspi-Config
 https://www.raspberrypi.org/documentation/configuration/raspi-config.md (20/08/2017)

 [3] Hudson, G.
 Raspberry Pi 3 compatibility (BT disable & serial port remap fix)
 https://openenergymonitor.org/forum-archive/node/12311.html (20/08/2017)

 [4] Raspberry Tips
 UART auf dem RaspberryPi nutzen
 https://raspberry.tips/raspberrypi-einsteiger/uart-auf-dem-raspberrypi-nutzen/ (20/08/2017)

https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/configuration/raspi-config.md
https://openenergymonitor.org/forum-archive/node/12311.html
https://raspberry.tips/raspberrypi-einsteiger/uart-auf-dem-raspberrypi-nutzen/

10.10.2018

36 / 36

 [5] PiGPIO
 PiGPIO Daemon
 http://abyz.co.uk/rpi/pigpio/pigpiod.html (20/08/2017)

Hochschule Anhalt | Anhalt University of Applied Sciences | Department 6 EMW
Xcom-API

Tobias Müller, M. Eng.
📧 Tobias.Mueller@HS-Anhalt.de

© es-lab.de, 10.07.2018

http://abyz.co.uk/rpi/pigpio/pigpiod.html
mailto:Tobias.Mueller@HS-Anhalt.de

