#!/usr/local/bin/python # -*- coding: utf-8 -*- import numpy as np import cv2 from mss import mss from PIL import Image import threading import time from random import randint import tensorflow as tf from tensorflow.keras import layers, models import sys sys.path.append('..') from hostLib.layers.conv2D import Conv2D as Conv2DFPGA bounding_box = {'top': 0, 'left': 0, 'width': 2560, 'height': 1440} width, height = 228, 228 sct = mss() stop = 0 a = layers.Input(dtype=tf.float32, shape=(width, height, 3)) z = Conv2DFPGA(1)(a) model = models.Model(inputs=a, outputs=z) model.compile(loss=tf.keras.losses.categorical_crossentropy, optimizer=tf.keras.optimizers.Adadelta(), metrics=['accuracy']) sct_img = sct.grab(bounding_box) np_img = np.array(sct_img) resized_image = cv2.resize(np_img, (width, height)) resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGRA2BGR) while True: cv2.ellipse( resized_image, (randint(0,width), randint(0,height)), (randint(0,width/2), randint(0,height/2)), randint(0,360), 0, 360, [randint(0,256), randint(0,256), randint(0,256)], 10 ) img32 = tf.cast(resized_image, tf.float32) #img32 = np.expand_dims(img32, axis=2) cv2.imshow('screen', resized_image) x,y,w,h = cv2.getWindowImageRect('screen') batch = np.expand_dims(img32, axis=0) batch = tf.tile(batch, [1,1,1,1]) print(batch.shape) predictions = model.predict(batch) pred8 = tf.cast(predictions / 256, tf.uint8) for i in range(pred8.shape[0]): name = 'conv_{}'.format(i) cv2.imshow(name, pred8.numpy()[i]) cv2.moveWindow(name, x+((i+1)*300)%1500, y+int((i+1)/5)*300) if (cv2.waitKey(1) & 0xFF) == ord('x') or stop: cv2.destroyAllWindows() stop = True break