123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 |
- import time
- import statistics
- import math
- import threading
- import random
- import traceback
- import queue
- from sensors.calibration import CalibrationStateMashine
- from sensors.connection import globalArduinoSlave
- import logHandler
- conn = globalArduinoSlave()
- class AcousticSensor:
- def __init__(self, conf):
- self.conf = conf
- self.queue = queue.Queue()
- self.calibration_state = CalibrationStateMashine()
- self.field_height = float(conf["field"]["y"])
- self.field_width = float(conf["field"]["x"])
- self.sensor_y_offset = float(conf["ac_sensor"]["y_offset"])
- self.left_sensor_x_offset = float(conf["ac_sensor"]["left_x_offset"])
- self.right_sensor_x_offset = float(conf["ac_sensor"]["right_x_offset"])
- self.calibration_y_offset_1 = float(conf["ac_sensor"]["calibration_y_offset_1"])
- self.calibration_y_offset_2 = float(conf["ac_sensor"]["calibration_y_offset_2"])
- self.calibration_x_offset = float(conf["ac_sensor"]["calibration_x_offset"])
- self.sensor_distance = self.field_width - self.left_sensor_x_offset + self.right_sensor_x_offset
- self.sonic_speed = float(conf["ac_sensor"]["sonicspeed"])
- self.overhead_left = float(conf["ac_sensor"]["overhead_left"])
- self.overhead_right = float(conf["ac_sensor"]["overhead_right"])
- self.log_handler = logHandler.get_log_handler()
- # temporary calibration variables
- self.time_vals = [[],[]]
- self.cal_values = {
- "front": [0, 0],
- "back": [0, 0]
- }
- self.n = 0
- def start(self):
- self.log_handler.log_and_print("start acoustic sensor")
- if not conn.isConnected():
- conn.open(port = self.conf["arduino"]["port"])
- conn.addRecvCallback(self._readCb)
- # generate dummy values until arduino is ready
- self.dummyActive = True
- dummyThread = threading.Thread(target=self._readCb_dummy)
- dummyThread.start()
-
- def start_calibration(self):
- self.calibration_state.reset_state()
- self.time_vals = [[],[]]
- self.calibration_state.next_state()
- def stop(self):
- self.log_handler.log_and_print("stop acoustic sensor")
- self.dummyActive = False
- conn.close()
- def _readCb_dummy(self):
- self.log_handler.log_and_print("acoustic sensor: generating test values")
- while self.dummyActive:
- if self.n % 4 < 1:
- dummyPosition = (0, self.n%1 * self.field_height)
- elif self.n % 4 < 2:
- dummyPosition = (self.n%1 * self.field_width, self.field_height)
- elif self.n % 4 < 3:
- dummyPosition = (self.field_width, self.field_height - self.n%1 * self.field_height)
- else:
- dummyPosition = (self.field_width - self.n%1 * self.field_width, 0)
- self.n += 0.01
- if self.calibration_state.get_state() in [self.calibration_state.ACCUMULATING_1, self.calibration_state.WAITING_POS_1]:
- dummyPosition = (self.calibration_x_offset + random.randint(-5,5), self.calibration_y_offset_1 + random.randint(-5,5))
-
- elif self.calibration_state.get_state() in [self.calibration_state.ACCUMULATING_2, self.calibration_state.WAITING_POS_2]:
- dummyPosition = (self.calibration_x_offset + random.randint(-5,5), self.calibration_y_offset_2 + random.randint(-5,5))
- # these dummy parameters should also appear after the calibration
- dummyValue = self.predict_values(dummyPosition, sonic_speed=0.35, overhead_left=30, overhead_right=100)
- self.calibrate(dummyValue)
- position = self.calculate_position(dummyValue)
- if position != None:
- self.pass_to_gui(position + dummyValue)
- time.sleep(0.012)
- self.log_handler.log_and_print("acoustic sensor: disabled test mode")
- def _readCb(self, raw):
- if self.dummyActive == True:
- self.dummyActive = False
- value = conn.getAcousticRTTs()
- # partially missing values will be ignored
- if value[0] >= 0 and value[1] >= 0:
- self.calibrate(value)
- position = self.calculate_position(value)
- if position != None:
- self.pass_to_gui(position + value)
- def calibrate(self, value):
- if self.calibration_state.get_state() == self.calibration_state.ACCUMULATING_1:
- self.time_vals[0].append(value[0])
- self.time_vals[1].append(value[1])
- self.calibration_state.progress = len(self.time_vals[0]) / 2
- if len(self.time_vals[0]) >= 100:
- self.cal_values["front"][0] = statistics.mean(self.time_vals[0])
- self.cal_values["front"][1] = statistics.mean(self.time_vals[1])
- self.time_vals = [[],[]]
- self.calibration_state.next_state() # signal gui to get next position
- elif self.calibration_state.get_state() == self.calibration_state.ACCUMULATING_2:
- self.time_vals[0].append(value[0])
- self.time_vals[1].append(value[1])
- self.calibration_state.progress = 50 + len(self.time_vals[0]) / 2
- if len(self.time_vals[0]) >= 100:
- self.cal_values["back"][0] = statistics.mean(self.time_vals[0])
- self.cal_values["back"][1] = statistics.mean(self.time_vals[1])
- # all values have been captured
- self.log_handler.log_and_print("calibration measurements:", self.cal_values)
-
- # calculate distances from config
- # /|\
- # d1 d2 d3 / | \ d4
- # _..'|'.._y_off + calYoff_2 / | \y_off + calYoff_2
- # /____|____\ /___|___\
- # x_off x_off
- distance_1 = math.sqrt((self.calibration_x_offset + self.left_sensor_x_offset)**2 + (self.sensor_y_offset + self.calibration_y_offset_1)**2 )
- distance_2 = math.sqrt((self.calibration_x_offset + self.left_sensor_x_offset)**2 + (self.sensor_y_offset + self.calibration_y_offset_2)**2 )
- distancedif = distance_2 - distance_1
- timedif = self.cal_values["back"][0] - self.cal_values["front"][0]
- # speed of sound in mm/us
- sonicspeed_1 = distancedif / timedif
- # same for the second set of values
- distance_3 = math.sqrt((self.right_sensor_x_offset + (self.field_width - self.calibration_x_offset))**2 + (self.sensor_y_offset + self.calibration_y_offset_1)**2 )
- distance_4 = math.sqrt((self.right_sensor_x_offset + (self.field_width - self.calibration_x_offset))**2 + (self.sensor_y_offset + self.calibration_y_offset_2)**2 )
- distancedif = distance_4 - distance_3
- timedif = self.cal_values["back"][1] - self.cal_values["front"][1]
- sonicspeed_2 = distancedif / timedif
- # processing time overhead in us
- overhead_1 = statistics.mean((self.cal_values["front"][0] - distance_1/sonicspeed_1, self.cal_values["back"][0] - distance_2/sonicspeed_1))
- overhead_2 = statistics.mean((self.cal_values["front"][1] - distance_3/sonicspeed_2, self.cal_values["back"][1] - distance_4/sonicspeed_2))
- # calculate calibration results
- self.sonic_speed = statistics.mean((sonicspeed_1,sonicspeed_2))
- self.overhead_left = overhead_1
- self.overhead_right = overhead_2
- self.log_handler.log_and_print("calibration results:")
- self.log_handler.log_and_print(" sonicspeed: {:8.6f} mm/us".format(self.sonic_speed))
- self.log_handler.log_and_print(" overhead_left: {:8.3f} us".format(self.overhead_left))
- self.log_handler.log_and_print(" overhead_right: {:8.3f} us".format(self.overhead_right))
- self.calibrathttps://gogs.es-lab.de/wokoeck_ch/lern-tracking-systemion_state.next_state()
- def read(self):
- value = conn.getAcousticRTTs()
- return value
- def calculate_position(self, values):
- val1, val2 = values
- val1 -= self.overhead_left
- val2 -= self.overhead_right
- distance_left = val1 * self.sonic_speed
- distance_right = val2 * self.sonic_speed
- # compute intersection of distance circles
- x = (self.sensor_distance**2 - distance_right**2 + distance_left**2) / (2*self.sensor_distance) + self.left_sensor_x_offset
- if distance_left**2 - x**2 >= 0:
- y = math.sqrt(distance_left**2 - x**2) - self.sensor_y_offset
- return (x, y)
- else:
- return None
- def predict_values(self, position, sonic_speed, overhead_left, overhead_right):
- x, y = position
- distance_left = math.sqrt((y + self.sensor_y_offset)**2 + x**2)
- distance_right = math.sqrt(self.sensor_distance**2 + distance_left**2 - x * 2 * self.sensor_distance - x * self.left_sensor_x_offset)
- return (distance_left / sonic_speed + overhead_left, distance_right / sonic_speed + overhead_right)
- def pass_to_gui(self, data):
- self.queue.put(("data", data))
|