#pragma once #ifndef MPU9250_H #define MPU9250_H #include #include "MPU9250/MPU9250RegisterMap.h" #include "MPU9250/QuaternionFilter.h" enum class AFS { A2G, A4G, A8G, A16G }; enum class GFS { G250DPS, G500DPS, G1000DPS, G2000DPS }; enum class MFS { M14BITS, M16BITS }; static constexpr uint8_t MPU9250_WHOAMI_DEFAULT_VALUE{0x71}; static constexpr uint8_t MPU9255_WHOAMI_DEFAULT_VALUE{0x73}; template class MPU9250_ { static constexpr uint8_t MPU9250_DEFAULT_ADDRESS{0x68}; // Device address when ADO = 0 static constexpr uint8_t AK8963_ADDRESS{0x0C}; // Address of magnetometer uint8_t MPU9250_ADDRESS{MPU9250_DEFAULT_ADDRESS}; const uint8_t AK8963_WHOAMI_DEFAULT_VALUE{0x48}; // Set initial input parameters // const uint8_t Mmode {0x02}; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read const uint8_t Mmode{0x06}; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read const float aRes{getAres()}; // scale resolutions per LSB for the sensors const float gRes{getGres()}; // scale resolutions per LSB for the sensors const float mRes{getMres()}; // scale resolutions per LSB for the sensors float magCalibration[3] = {0, 0, 0}; // factory mag calibration float magBias[3] = {0, 0, 0}; float magScale[3] = {1.0, 1.0, 1.0}; // Bias corrections for gyro and accelerometer float gyroBias[3] = {0, 0, 0}; // bias corrections float accelBias[3] = {0, 0, 0}; // bias corrections int16_t tempCount; // temperature raw count output float temperature; // Stores the real internal chip temperature in degrees Celsius float SelfTestResult[6]; // holds results of gyro and accelerometer self test float a[3], g[3], m[3]; float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion float pitch, yaw, roll; float a12, a22, a31, a32, a33; // rotation matrix coefficients for Euler angles and gravity components float lin_ax, lin_ay, lin_az; // linear acceleration (acceleration with gravity component subtracted) QuaternionFilter qFilter; float magnetic_declination = 4.6; // Köthen, 26th November bool b_verbose{false}; public: MPU9250_() : aRes(getAres()), gRes(getGres()), mRes(getMres()) {} bool setup(const uint8_t addr, WireType& w = Wire) { // addr should be valid for MPU if ((addr < MPU9250_DEFAULT_ADDRESS) || (addr > MPU9250_DEFAULT_ADDRESS + 7)) { Serial.print("I2C address 0x"); Serial.print(addr, HEX); Serial.println(" is not valid for MPU. Please check your I2C address."); return false; } wire = &w; MPU9250_ADDRESS = addr; if (isConnectedMPU9250()) { if (b_verbose) Serial.println("MPU9250 is online..."); initMPU9250(); if (isConnectedAK8963()) initAK8963(magCalibration); else { if (b_verbose) Serial.println("Could not connect to AK8963"); return false; } } else { if (b_verbose) Serial.println("Could not connect to MPU9250"); return false; } return true; } void verbose(const bool b) { b_verbose = b; } void calibrateAccelGyro() { calibrateMPU9250(gyroBias, accelBias); } void calibrateMag() { magcalMPU9250(magBias, magScale); } bool isConnectedMPU9250() { byte c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); if (b_verbose) { Serial.print("MPU9250 WHO AM I = "); Serial.println(c, HEX); } return (c == WHO_AM_I); } bool isConnectedAK8963() { byte c = readByte(AK8963_ADDRESS, AK8963_WHO_AM_I); if (b_verbose) { Serial.print("AK8963 WHO AM I = "); Serial.println(c, HEX); } return (c == AK8963_WHOAMI_DEFAULT_VALUE); } bool available() { return (readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01); } bool update() { if (!available()) return false; updateAccelGyro(); updateMag(); // Madgwick function needs to be fed North, East, and Down direction like // (AN, AE, AD, GN, GE, GD, MN, ME, MD) // Accel and Gyro direction is Right-Hand, X-Forward, Z-Up // Magneto direction is Right-Hand, Y-Forward, Z-Down // So to adopt to the general Aircraft coordinate system (Right-Hand, X-Forward, Z-Down), // we need to feed (ax, -ay, -az, gx, -gy, -gz, my, -mx, mz) // but we pass (-ax, ay, az, gx, -gy, -gz, my, -mx, mz) // because gravity is by convention positive down, we need to ivnert the accel data // get quaternion based on aircraft coordinate (Right-Hand, X-Forward, Z-Down) // acc[mg], gyro[deg/s], mag [mG] // gyro will be convert from [deg/s] to [rad/s] inside of this function qFilter.update(-a[0], a[1], a[2], g[0], -g[1], -g[2], m[1], -m[0], m[2], q); if (!b_ahrs) { tempCount = readTempData(); // Read the adc values temperature = ((float)tempCount) / 333.87 + 21.0; // Temperature in degrees Centigrade } else { // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. // In this coordinate system, the positive z-axis is down toward Earth. // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be // applied in the correct order which for this configuration is yaw, pitch, and then roll. // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. updateRPY(); } return true; } // TODO: more efficient getter, const refrerence of struct?? float getRoll() const { return roll; } float getPitch() const { return pitch; } float getYaw() const { return yaw; } float getQuaternion(const uint8_t i) const { return (i < 4) ? q[i] : 0.f; } float getQuaternionX() const { return q[0]; } float getQuaternionY() const { return q[1]; } float getQuaternionZ() const { return q[2]; } float getQuaternionW() const { return q[3]; } float getAcc(const uint8_t i) const { return (i < 3) ? a[i] : 0.f; } float getGyro(const uint8_t i) const { return (i < 3) ? g[i] : 0.f; } float getMag(const uint8_t i) const { return (i < 3) ? m[i] : 0.f; } float getAccX() const { return a[0]; } float getAccY() const { return a[1]; } float getAccZ() const { return a[2]; } float getGyroX() const { return g[0]; } float getGyroY() const { return g[1]; } float getGyroZ() const { return g[2]; } float getMagX() const { return m[0]; } float getMagY() const { return m[1]; } float getMagZ() const { return m[2]; } float getAccBias(const uint8_t i) const { return (i < 3) ? accelBias[i] : 0.f; } float getGyroBias(const uint8_t i) const { return (i < 3) ? gyroBias[i] : 0.f; } float getMagBias(const uint8_t i) const { return (i < 3) ? magBias[i] : 0.f; } float getMagScale(const uint8_t i) const { return (i < 3) ? magScale[i] : 0.f; } float getAccBiasX() const { return accelBias[0]; } float getAccBiasY() const { return accelBias[1]; } float getAccBiasZ() const { return accelBias[2]; } float getGyroBiasX() const { return gyroBias[0]; } float getGyroBiasY() const { return gyroBias[1]; } float getGyroBiasZ() const { return gyroBias[2]; } float getMagBiasX() const { return magBias[0]; } float getMagBiasY() const { return magBias[1]; } float getMagBiasZ() const { return magBias[2]; } float getMagScaleX() const { return magScale[0]; } float getMagScaleY() const { return magScale[1]; } float getMagScaleZ() const { return magScale[2]; } float getTemperature() const { return temperature; } void setAccBias(const uint8_t i, const float v) { if (i < 3) accelBias[i] = v; } void setGyroBias(const uint8_t i, const float v) { if (i < 3) gyroBias[i] = v; } void setMagBias(const uint8_t i, const float v) { if (i < 3) magBias[i] = v; } void setMagScale(const uint8_t i, const float v) { if (i < 3) magScale[i] = v; } void setAccBiasX(const float v) { accelBias[0] = v; } void setAccBiasY(const float v) { accelBias[1] = v; } void setAccBiasZ(const float v) { accelBias[2] = v; } void setGyroBiasX(const float v) { gyroBias[0] = v; } void setGyroBiasY(const float v) { gyroBias[1] = v; } void setGyroBiasZ(const float v) { gyroBias[2] = v; } void setMagBiasX(const float v) { magBias[0] = v; } void setMagBiasY(const float v) { magBias[1] = v; } void setMagBiasZ(const float v) { magBias[2] = v; } void setMagScaleX(const float v) { magScale[0] = v; } void setMagScaleY(const float v) { magScale[1] = v; } void setMagScaleZ(const float v) { magScale[2] = v; } void setMagneticDeclination(const float d) { magnetic_declination = d; } void print() const { printRawData(); printRollPitchYaw(); printCalibration(); } void printRawData() const { // Print acceleration values in milligs! Serial.print("ax = "); Serial.print((int)1000 * a[0]); Serial.print(" ay = "); Serial.print((int)1000 * a[1]); Serial.print(" az = "); Serial.print((int)1000 * a[2]); Serial.println(" mg"); // Print gyro values in degree/sec Serial.print("gx = "); Serial.print(g[0], 2); Serial.print(" gy = "); Serial.print(g[1], 2); Serial.print(" gz = "); Serial.print(g[2], 2); Serial.println(" deg/s"); // Print mag values in degree/sec Serial.print("mx = "); Serial.print((int)m[0]); Serial.print(" my = "); Serial.print((int)m[1]); Serial.print(" mz = "); Serial.print((int)m[2]); Serial.println(" mG"); Serial.print("q0 = "); Serial.print(q[0]); Serial.print(" qx = "); Serial.print(q[1]); Serial.print(" qy = "); Serial.print(q[2]); Serial.print(" qz = "); Serial.println(q[3]); } void printRollPitchYaw() const { Serial.print("Yaw, Pitch, Roll: "); Serial.print(yaw, 2); Serial.print(", "); Serial.print(pitch, 2); Serial.print(", "); Serial.println(roll, 2); } void printCalibration() const { Serial.println("< calibration parameters >"); Serial.println("accel bias [g]: "); Serial.print(accelBias[0] * 1000.f); Serial.print(", "); Serial.print(accelBias[1] * 1000.f); Serial.print(", "); Serial.print(accelBias[2] * 1000.f); Serial.println(); Serial.println("gyro bias [deg/s]: "); Serial.print(gyroBias[0]); Serial.print(", "); Serial.print(gyroBias[1]); Serial.print(", "); Serial.print(gyroBias[2]); Serial.println(); Serial.println("mag bias [mG]: "); Serial.print(magBias[0]); Serial.print(", "); Serial.print(magBias[1]); Serial.print(", "); Serial.print(magBias[2]); Serial.println(); Serial.println("mag scale []: "); Serial.print(magScale[0]); Serial.print(", "); Serial.print(magScale[1]); Serial.print(", "); Serial.print(magScale[2]); Serial.println(); } private: float getAres() const { switch (AFSSEL) { // Possible accelerometer scales (and their register bit settings) are: // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: case AFS::A2G: return 2.0 / 32768.0; case AFS::A4G: return 4.0 / 32768.0; case AFS::A8G: return 8.0 / 32768.0; case AFS::A16G: return 16.0 / 32768.0; } } float getGres() const { switch (GFSSEL) { // Possible gyro scales (and their register bit settings) are: // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: case GFS::G250DPS: return 250.0 / 32768.0; case GFS::G500DPS: return 500.0 / 32768.0; case GFS::G1000DPS: return 1000.0 / 32768.0; case GFS::G2000DPS: return 2000.0 / 32768.0; } } float getMres() const { switch (MFSSEL) { // Possible magnetometer scales (and their register bit settings) are: // 14 bit resolution (0) and 16 bit resolution (1) // Proper scale to return milliGauss case MFS::M14BITS: return 10. * 4912. / 8190.0; case MFS::M16BITS: return 10. * 4912. / 32760.0; } } void updateAccelGyro() { int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the MPU9250 accel/gyro readMPU9250Data(MPU9250Data); // INT cleared on any read // Now we'll calculate the accleration value into actual g's a[0] = (float)MPU9250Data[0] * aRes - accelBias[0]; // get actual g value, this depends on scale being set a[1] = (float)MPU9250Data[1] * aRes - accelBias[1]; a[2] = (float)MPU9250Data[2] * aRes - accelBias[2]; tempCount = MPU9250Data[3]; // Read the adc values temperature = ((float)tempCount) / 333.87 + 21.0; // Temperature in degrees Centigrade // Calculate the gyro value into actual degrees per second g[0] = (float)MPU9250Data[4] * gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set g[1] = (float)MPU9250Data[5] * gRes - gyroBias[1]; g[2] = (float)MPU9250Data[6] * gRes - gyroBias[2]; } void readMPU9250Data(int16_t* destination) { uint8_t rawData[14]; // x/y/z accel register data stored here readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 14, &rawData[0]); // Read the 14 raw data registers into data array destination[0] = ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a signed 16-bit value destination[1] = ((int16_t)rawData[2] << 8) | rawData[3]; destination[2] = ((int16_t)rawData[4] << 8) | rawData[5]; destination[3] = ((int16_t)rawData[6] << 8) | rawData[7]; destination[4] = ((int16_t)rawData[8] << 8) | rawData[9]; destination[5] = ((int16_t)rawData[10] << 8) | rawData[11]; destination[6] = ((int16_t)rawData[12] << 8) | rawData[13]; } void updateMag() { int16_t magCount[3] = {0, 0, 0}; // Stores the 16-bit signed magnetometer sensor output readMagData(magCount); // Read the x/y/z adc values // getMres(); // Calculate the magnetometer values in milliGauss // Include factory calibration per data sheet and user environmental corrections m[0] = (float)(magCount[0] * mRes * magCalibration[0] - magBias[0]) * magScale[0]; // get actual magnetometer value, this depends on scale being set m[1] = (float)(magCount[1] * mRes * magCalibration[1] - magBias[1]) * magScale[1]; m[2] = (float)(magCount[2] * mRes * magCalibration[2] - magBias[2]) * magScale[2]; } void readMagData(int16_t* destination) { uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition if (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array uint8_t c = rawData[6]; // End data read by reading ST2 register if (!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data destination[0] = ((int16_t)rawData[1] << 8) | rawData[0]; // Turn the MSB and LSB into a signed 16-bit value destination[1] = ((int16_t)rawData[3] << 8) | rawData[2]; // Data stored as little Endian destination[2] = ((int16_t)rawData[5] << 8) | rawData[4]; } } } void updateRPY() { a12 = 2.0f * (q[1] * q[2] + q[0] * q[3]); a22 = q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]; a31 = 2.0f * (q[0] * q[1] + q[2] * q[3]); a32 = 2.0f * (q[1] * q[3] - q[0] * q[2]); a33 = q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]; pitch = -asinf(a32); roll = atan2f(a31, a33); yaw = atan2f(a12, a22); pitch *= 180.0f / PI; roll *= 180.0f / PI; yaw *= 180.0f / PI; yaw += magnetic_declination; if (yaw >= +180.f) yaw -= 360.f; else if (yaw < -180.f) yaw += 360.f; lin_ax = a[0] + a31; lin_ay = a[1] + a32; lin_az = a[2] - a33; } int16_t readTempData() { uint8_t rawData[2]; // x/y/z gyro register data stored here readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array return ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a 16-bit value } void initAK8963(float* destination) { // First extract the factory calibration for each magnetometer axis uint8_t rawData[3]; // x/y/z gyro calibration data stored here writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer delay(10); writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode delay(10); readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values destination[0] = (float)(rawData[0] - 128) / 256. + 1.; // Return x-axis sensitivity adjustment values, etc. destination[1] = (float)(rawData[1] - 128) / 256. + 1.; destination[2] = (float)(rawData[2] - 128) / 256. + 1.; writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer delay(10); // Configure the magnetometer for continuous read and highest resolution // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates writeByte(AK8963_ADDRESS, AK8963_CNTL, (uint8_t)MFSSEL << 4 | Mmode); // Set magnetometer data resolution and sample ODR delay(10); if (b_verbose) { Serial.println("Calibration values: "); Serial.print("X-Axis sensitivity adjustment value "); Serial.println(destination[0], 2); Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(destination[1], 2); Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(destination[2], 2); Serial.print("X-Axis sensitivity offset value "); Serial.println(magBias[0], 2); Serial.print("Y-Axis sensitivity offset value "); Serial.println(magBias[1], 2); Serial.print("Z-Axis sensitivity offset value "); Serial.println(magBias[2], 2); } } void magcalMPU9250(float* dest1, float* dest2) { uint16_t ii = 0, sample_count = 0; int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0}; int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767, 32767}, mag_temp[3] = {0, 0, 0}; if (b_verbose) Serial.println("Mag Calibration: Wave device in a figure eight until done!"); delay(4000); // shoot for ~fifteen seconds of mag data if (Mmode == 0x02) sample_count = 128; // at 8 Hz ODR, new mag data is available every 125 ms else if (Mmode == 0x06) sample_count = 1500; // at 100 Hz ODR, new mag data is available every 10 ms for (ii = 0; ii < sample_count; ii++) { readMagData(mag_temp); // Read the mag data for (int jj = 0; jj < 3; jj++) { if (mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj]; if (mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj]; } if (Mmode == 0x02) delay(135); // at 8 Hz ODR, new mag data is available every 125 ms if (Mmode == 0x06) delay(12); // at 100 Hz ODR, new mag data is available every 10 ms } if (b_verbose) { Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]); Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]); Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]); } // Get hard iron correction mag_bias[0] = (mag_max[0] + mag_min[0]) / 2; // get average x mag bias in counts mag_bias[1] = (mag_max[1] + mag_min[1]) / 2; // get average y mag bias in counts mag_bias[2] = (mag_max[2] + mag_min[2]) / 2; // get average z mag bias in counts dest1[0] = (float)mag_bias[0] * mRes * magCalibration[0]; // save mag biases in G for main program dest1[1] = (float)mag_bias[1] * mRes * magCalibration[1]; dest1[2] = (float)mag_bias[2] * mRes * magCalibration[2]; // Get soft iron correction estimate mag_scale[0] = (mag_max[0] - mag_min[0]) / 2; // get average x axis max chord length in counts mag_scale[1] = (mag_max[1] - mag_min[1]) / 2; // get average y axis max chord length in counts mag_scale[2] = (mag_max[2] - mag_min[2]) / 2; // get average z axis max chord length in counts float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; avg_rad /= 3.0; dest2[0] = avg_rad / ((float)mag_scale[0]); dest2[1] = avg_rad / ((float)mag_scale[1]); dest2[2] = avg_rad / ((float)mag_scale[2]); if (b_verbose) { Serial.println("Mag Calibration done!"); Serial.println("AK8963 mag biases (mG)"); Serial.print(magBias[0]); Serial.print(", "); Serial.print(magBias[1]); Serial.print(", "); Serial.print(magBias[2]); Serial.println(); Serial.println("AK8963 mag scale (mG)"); Serial.print(magScale[0]); Serial.print(", "); Serial.print(magScale[1]); Serial.print(", "); Serial.print(magScale[2]); Serial.println(); } } void initMPU9250() { // wake up device writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors delay(100); // Wait for all registers to reset // get stable time source writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else delay(200); // Configure Gyro and Thermometer // Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively; // minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot // be higher than 1 / 0.0059 = 170 Hz // DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both // With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz writeByte(MPU9250_ADDRESS, MPU_CONFIG, 0x03); // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate // determined inset in CONFIG above // Set gyroscope full scale range // Range selects FS_SEL and GFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value // c = c & ~0xE0; // Clear self-test bits [7:5] c = c & ~0x03; // Clear Fchoice bits [1:0] c = c & ~0x18; // Clear GFS bits [4:3] c = c | (uint8_t)GFSSEL << 3; // Set full scale range for the gyro // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c); // Write new GYRO_CONFIG value to register // Set accelerometer full-scale range configuration c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value // c = c & ~0xE0; // Clear self-test bits [7:5] c = c & ~0x18; // Clear AFS bits [4:3] c = c | (uint8_t)AFSSEL << 3; // Set full scale range for the accelerometer writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value // Set accelerometer sample rate configuration // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting // Configure Interrupts and Bypass Enable // Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared, // clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips // can join the I2C bus and all can be controlled by the Arduino as master writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt delay(100); } // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. void calibrateMPU9250(float* dest1, float* dest2) { uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data uint16_t ii, packet_count, fifo_count; int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; // reset device writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device delay(100); // get stable time source; Auto select clock source to be PLL gyroscope reference if ready // else use the internal oscillator, bits 2:0 = 001 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); delay(200); // Configure device for bias calculation writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP delay(15); // Configure MPU6050 gyro and accelerometer for bias calculation writeByte(MPU9250_ADDRESS, MPU_CONFIG, 0x01); // Set low-pass filter to 188 Hz writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec uint16_t accelsensitivity = 16384; // = 16384 LSB/g // Configure FIFO to capture accelerometer and gyro data for bias calculation writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150) delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes // At end of sample accumulation, turn off FIFO sensor read writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count fifo_count = ((uint16_t)data[0] << 8) | data[1]; packet_count = fifo_count / 12; // How many sets of full gyro and accelerometer data for averaging for (ii = 0; ii < packet_count; ii++) { int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging accel_temp[0] = (int16_t)(((int16_t)data[0] << 8) | data[1]); // Form signed 16-bit integer for each sample in FIFO accel_temp[1] = (int16_t)(((int16_t)data[2] << 8) | data[3]); accel_temp[2] = (int16_t)(((int16_t)data[4] << 8) | data[5]); gyro_temp[0] = (int16_t)(((int16_t)data[6] << 8) | data[7]); gyro_temp[1] = (int16_t)(((int16_t)data[8] << 8) | data[9]); gyro_temp[2] = (int16_t)(((int16_t)data[10] << 8) | data[11]); accel_bias[0] += (int32_t)accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases accel_bias[1] += (int32_t)accel_temp[1]; accel_bias[2] += (int32_t)accel_temp[2]; gyro_bias[0] += (int32_t)gyro_temp[0]; gyro_bias[1] += (int32_t)gyro_temp[1]; gyro_bias[2] += (int32_t)gyro_temp[2]; } accel_bias[0] /= (int32_t)packet_count; // Normalize sums to get average count biases accel_bias[1] /= (int32_t)packet_count; accel_bias[2] /= (int32_t)packet_count; gyro_bias[0] /= (int32_t)packet_count; gyro_bias[1] /= (int32_t)packet_count; gyro_bias[2] /= (int32_t)packet_count; if (accel_bias[2] > 0L) { accel_bias[2] -= (int32_t)accelsensitivity; } // Remove gravity from the z-axis accelerometer bias calculation else { accel_bias[2] += (int32_t)accelsensitivity; } // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF; data[3] = (-gyro_bias[1] / 4) & 0xFF; data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF; data[5] = (-gyro_bias[2] / 4) & 0xFF; // Push gyro biases to hardware registers writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); // Output scaled gyro biases for display in the main program dest1[0] = (float)gyro_bias[0] / (float)gyrosensitivity; dest1[1] = (float)gyro_bias[1] / (float)gyrosensitivity; dest1[2] = (float)gyro_bias[2] / (float)gyrosensitivity; // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that // the accelerometer biases calculated above must be divided by 8. // int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases // readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values // accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]); // readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); // accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]); // readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); // accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]); // uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers // uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis // for(ii = 0; ii < 3; ii++) { // if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit // } // // Construct total accelerometer bias, including calculated average accelerometer bias from above // accel_bias_reg[0] -= (accel_bias[0] / 8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) // accel_bias_reg[1] -= (accel_bias[1] / 8); // accel_bias_reg[2] -= (accel_bias[2] / 8); // data[0] = (accel_bias_reg[0] >> 8) & 0xFF; // data[1] = (accel_bias_reg[0]) & 0xFF; // data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers // data[2] = (accel_bias_reg[1] >> 8) & 0xFF; // data[3] = (accel_bias_reg[1]) & 0xFF; // data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers // data[4] = (accel_bias_reg[2] >> 8) & 0xFF; // data[5] = (accel_bias_reg[2]) & 0xFF; // data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers // Apparently this is not working for the acceleration biases in the MPU-9250 // Are we handling the temperature correction bit properly? // Push accelerometer biases to hardware registers // writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); // writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); // writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); // writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); // writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); // writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); // Output scaled accelerometer biases for display in the main program dest2[0] = (float)accel_bias[0] / (float)accelsensitivity; dest2[1] = (float)accel_bias[1] / (float)accelsensitivity; dest2[2] = (float)accel_bias[2] / (float)accelsensitivity; if (b_verbose) { Serial.println("MPU9250 bias"); Serial.println(" x y z "); Serial.print((int)(1000 * accelBias[0])); Serial.print(" "); Serial.print((int)(1000 * accelBias[1])); Serial.print(" "); Serial.print((int)(1000 * accelBias[2])); Serial.print(" "); Serial.println("mg"); Serial.print(gyroBias[0], 1); Serial.print(" "); Serial.print(gyroBias[1], 1); Serial.print(" "); Serial.print(gyroBias[2], 1); Serial.print(" "); Serial.println("o/s"); } delay(100); initMPU9250(); delay(1000); } // Accelerometer and gyroscope self test; check calibration wrt factory settings void SelfTest() // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass { uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; uint8_t selfTest[6]; int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0}; float factoryTrim[6]; uint8_t FS = 0; writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz writeByte(MPU9250_ADDRESS, MPU_CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz writeByte(MPU9250_ADDRESS, GYRO_CONFIG, FS << 3); // Set full scale range for the gyro to 250 dps writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, FS << 3); // Set full scale range for the accelerometer to 2 g for (int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); } for (int ii = 0; ii < 3; ii++) { // Get average of 200 values and store as average current readings aAvg[ii] /= 200; gAvg[ii] /= 200; } // Configure the accelerometer for self-test writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s delay(25); // Delay a while to let the device stabilize for (int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); } for (int ii = 0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings aSTAvg[ii] /= 200; gSTAvg[ii] /= 200; } // Configure the gyro and accelerometer for normal operation writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); delay(25); // Delay a while to let the device stabilize // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results // Retrieve factory self-test value from self-test code reads factoryTrim[0] = (float)(2620 / 1 << FS) * (pow(1.01, ((float)selfTest[0] - 1.0))); // FT[Xa] factory trim calculation factoryTrim[1] = (float)(2620 / 1 << FS) * (pow(1.01, ((float)selfTest[1] - 1.0))); // FT[Ya] factory trim calculation factoryTrim[2] = (float)(2620 / 1 << FS) * (pow(1.01, ((float)selfTest[2] - 1.0))); // FT[Za] factory trim calculation factoryTrim[3] = (float)(2620 / 1 << FS) * (pow(1.01, ((float)selfTest[3] - 1.0))); // FT[Xg] factory trim calculation factoryTrim[4] = (float)(2620 / 1 << FS) * (pow(1.01, ((float)selfTest[4] - 1.0))); // FT[Yg] factory trim calculation factoryTrim[5] = (float)(2620 / 1 << FS) * (pow(1.01, ((float)selfTest[5] - 1.0))); // FT[Zg] factory trim calculation // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response // To get percent, must multiply by 100 for (int i = 0; i < 3; i++) { SelfTestResult[i] = 100.0 * ((float)(aSTAvg[i] - aAvg[i])) / factoryTrim[i] - 100.; // Report percent differences SelfTestResult[i + 3] = 100.0 * ((float)(gSTAvg[i] - gAvg[i])) / factoryTrim[i + 3] - 100.; // Report percent differences } if (b_verbose) { Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTestResult[0], 1); Serial.println("% of factory value"); Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTestResult[1], 1); Serial.println("% of factory value"); Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTestResult[2], 1); Serial.println("% of factory value"); Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTestResult[3], 1); Serial.println("% of factory value"); Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTestResult[4], 1); Serial.println("% of factory value"); Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTestResult[5], 1); Serial.println("% of factory value"); } delay(5000); } void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { wire->beginTransmission(address); // Initialize the Tx buffer wire->write(subAddress); // Put slave register address in Tx buffer wire->write(data); // Put data in Tx buffer i2c_err_ = wire->endTransmission(); // Send the Tx buffer if (i2c_err_) pirntI2CError(); } uint8_t readByte(uint8_t address, uint8_t subAddress) { uint8_t data = 0; // `data` will store the register data wire->beginTransmission(address); // Initialize the Tx buffer wire->write(subAddress); // Put slave register address in Tx buffer i2c_err_ = wire->endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive if (i2c_err_) pirntI2CError(); wire->requestFrom(address, (size_t)1); // Read one byte from slave register address if (wire->available()) data = wire->read(); // Fill Rx buffer with result return data; // Return data read from slave register } void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t* dest) { wire->beginTransmission(address); // Initialize the Tx buffer wire->write(subAddress); // Put slave register address in Tx buffer i2c_err_ = wire->endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive if (i2c_err_) pirntI2CError(); uint8_t i = 0; wire->requestFrom(address, count); // Read bytes from slave register address while (wire->available()) { dest[i++] = wire->read(); } // Put read results in the Rx buffer } void pirntI2CError() { if (i2c_err_ == 7) return; // to avoid stickbreaker-i2c branch's error code Serial.print("I2C ERROR CODE : "); Serial.println(i2c_err_); } bool b_ahrs{true}; WireType* wire; uint8_t i2c_err_; }; using MPU9250 = MPU9250_; using MPU9255 = MPU9250_; #endif // MPU9250_H