#!/bin/python3 import time import math import threading import traceback import queue import numpy as np import cv2 import cv2.aruco as aruco if __name__ != "__main__": from sensors.calibration import CalibrationStateMashine import logHandler aruco_dict = aruco.Dictionary_get(aruco.DICT_4X4_50) def saveMarkers(): image = np.zeros((400,400), np.uint8) image[:,:] = (255) image[ 50: 50 + 100, 50: 50 + 100] = aruco_dict.drawMarker(0, 100) image[ 50: 50 + 100,-50 - 100:-50] = aruco_dict.drawMarker(1, 100) cv2.imwrite("markers.png", image) parameters = aruco.DetectorParameters_create() def find_marker(image, debug=True): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if debug: image[:,:,0] = gray image[:,:,1] = gray image[:,:,2] = gray corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, aruco_dict, parameters=parameters) if debug: for corner in rejectedImgPoints: c = corner[0] cv2.line(image, tuple(c[0]), tuple(c[1]), (0, 255, 255), 1) cv2.line(image, tuple(c[1]), tuple(c[2]), (0, 255, 255), 1) cv2.line(image, tuple(c[2]), tuple(c[3]), (0, 255, 255), 1) cv2.line(image, tuple(c[3]), tuple(c[0]), (0, 255, 255), 1) markers = [None] * 4 if not corners: return markers for corner, id in zip(corners, ids.flatten()): # calculate the average of all 4 corners c = corner[0] cX = sum(c[:,0]) / 4 cY = sum(c[:,1]) / 4 if debug: # draw the bounding box of the ArUCo detection cv2.line(image, tuple(c[0]), tuple(c[1]), (0, 255, 0), 2) cv2.line(image, tuple(c[1]), tuple(c[2]), (0, 255, 0), 2) cv2.line(image, tuple(c[2]), tuple(c[3]), (0, 255, 0), 2) cv2.line(image, tuple(c[3]), tuple(c[0]), (0, 255, 0), 2) cv2.putText(image, str(id), (int(c[0][0]), int(c[0][1]) - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.circle(image, (int(cX), int(cY)), 4, (0, 0, 255), -1) if id < 4: markers[id] = (cX, cY) return markers def measureDistances(image, debug=True): markers = find_marker(image, debug) if markers[0] and markers[1]: # the distance between marker 0 and marker 1 distance = np.sqrt((markers[0][0]-markers[1][0])**2 + (markers[0][1]-markers[1][1])**2) # the center point between marker 0 and 1 centerX = (markers[0][0]+markers[1][0])/2 centerY = (markers[0][1]+markers[1][1])/2 if debug: cv2.line(image, (int(markers[0][0]),int(markers[0][1])), (int(markers[1][0]),int(markers[1][1])), (255, 0, 0), 2) cv2.line(image, (0, 20), (int(centerX), 20), (255, 0, 0), 2) cv2.line(image, (int(centerX), int(centerY)), (int(centerX), 0), (0, 255, 0), 2) cv2.circle(image, (int(centerX), int(centerY)), 4, (0, 0, 255), -1) cv2.putText(image, "%.2fpx" % (distance), (int(markers[0][0]), int(markers[0][1]+25)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 3) cv2.putText(image, "%.2fpx" % (centerX) , (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 3) # normalize pixels to percent of horizontal resolution return centerX/image.shape[1], distance/image.shape[1] else: return None class OpticalSensor(): def __init__(self, conf): self.conf = conf self.queue = queue.Queue() self.calibration_state = CalibrationStateMashine() self.field_height = float(conf["field"]["y"]) self.field_width = float(conf["field"]["x"]) self.target_distance = float(conf["opt_sensor"]["target_distance"]) self.x_offset = float(conf["opt_sensor"]["x_offset"]) self.fov = float(conf["opt_sensor"]["fov"]) self.log_handler = logHandler.get_log_handler() self.showImage = conf["opt_sensor"]["debug_image"] == "yes" self._thread = threading.Thread(target=self._getFrames, args=()) self.success = False self.running = True def start(self): self.log_handler.log_and_print("start optical sensor") self._thread.start() def _getFrames(self): try: dev = int(self.conf["opt_sensor"]["capture_device"]) except ValueError: dev = self.conf["opt_sensor"]["capture_device"] self.cap = cv2.VideoCapture(dev) while self.running: self.success, image = self.cap.read() if self.success: values = measureDistances(image, self.showImage) if values: self.calibrate(values) position = self.calculate_position(values) if position != None: self.pass_to_gui(position + values) if self.showImage: cv2.imshow("Camera capture with ARUCO detection", image) if cv2.waitKey(1) & 0xFF == ord('q'): self.showImage = False cv2.destroyAllWindows() else: self.log_handler.log_and_print("optical sensor: image capture error") time.sleep(15) def calibrate(self, values): pass def stop(self): self.running = False self._thread.join() self.log_handler.log_and_print("stopped optical sensor") def calculate_position(self, values): centerX_perc, distance_perc = values # distance (as a percentage of visible_width_at_y) # \ <--------> /<= beta # \ | / / # \ y| / / # \ |/ / # x_off \__/ #<---------># <= camera with FoV/2 = alpha # extrapolate total width from measured fiducial distance visible_width_at_y = self.target_distance / distance_perc # 50% is is center of camera, so we shift it by x_offset to align with the system x = self.x_offset + visible_width_at_y * (centerX_perc-0.5) alpha = (self.fov/2) / 180 * math.pi beta = (90 - self.fov/2) / 180 * math.pi y = visible_width_at_y/2 / math.sin(alpha) * math.sin(beta) return (x, y) def pass_to_gui(self, data): self.queue.put(("data", data)) if __name__ == "__main__": saveMarkers() cap = cv2.VideoCapture(1) while True: success, image = cap.read() print(measureDistances(image)) cv2.imshow("image", image) if cv2.waitKey(1) & 0xFF == ord('q'): break