123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556 |
- // (C) 2001-2018 Intel Corporation. All rights reserved.
- // Your use of Intel Corporation's design tools, logic functions and other
- // software and tools, and its AMPP partner logic functions, and any output
- // files from any of the foregoing (including device programming or simulation
- // files), and any associated documentation or information are expressly subject
- // to the terms and conditions of the Intel Program License Subscription
- // Agreement, Intel FPGA IP License Agreement, or other applicable
- // license agreement, including, without limitation, that your use is for the
- // sole purpose of programming logic devices manufactured by Intel and sold by
- // Intel or its authorized distributors. Please refer to the applicable
- // agreement for further details.
- // $Id: //acds/rel/18.1std/ip/merlin/altera_merlin_master_translator/altera_merlin_master_translator.sv#1 $
- // $Revision: #1 $
- // $Date: 2018/07/18 $
- // $Author: psgswbuild $
- // --------------------------------------
- // Merlin Master Translator
- //
- // Converts an Avalon-MM master interface into an
- // Avalon-MM "universal" master interface.
- //
- // The universal interface is defined as the superset of ports
- // and parameters that can represent any legal Avalon
- // interface.
- // --------------------------------------
- `timescale 1 ns / 1 ns
- module altera_merlin_master_translator #(
- parameter
- // widths
- AV_ADDRESS_W = 32,
- AV_DATA_W = 32,
- AV_BURSTCOUNT_W = 4,
- AV_BYTEENABLE_W = 4,
- UAV_ADDRESS_W = 38,
- UAV_BURSTCOUNT_W = 10,
-
- // optional ports
- USE_BURSTCOUNT = 1,
- USE_BEGINBURSTTRANSFER = 0,
- USE_BEGINTRANSFER = 0,
- USE_CHIPSELECT = 0,
- USE_READ = 1,
- USE_READDATAVALID = 1,
- USE_WRITE = 1,
- USE_WAITREQUEST = 1,
- USE_WRITERESPONSE = 0,
- USE_READRESPONSE = 0,
-
- AV_REGISTERINCOMINGSIGNALS = 0,
- AV_SYMBOLS_PER_WORD = 4,
- AV_ADDRESS_SYMBOLS = 0,
- // must be enabled for a bursting master
- AV_CONSTANT_BURST_BEHAVIOR = 1,
- UAV_CONSTANT_BURST_BEHAVIOR = 0,
- AV_BURSTCOUNT_SYMBOLS = 0,
- AV_LINEWRAPBURSTS = 0
- )(
- input wire clk,
- input wire reset,
- // Universal Avalon Master
- output reg uav_write,
- output reg uav_read,
- output reg [UAV_ADDRESS_W -1 : 0] uav_address,
- output reg [UAV_BURSTCOUNT_W -1 : 0] uav_burstcount,
- output wire [AV_BYTEENABLE_W -1 : 0] uav_byteenable,
- output wire [AV_DATA_W -1 : 0] uav_writedata,
- output wire uav_lock,
- output wire uav_debugaccess,
- output wire uav_clken,
- input wire [AV_DATA_W -1 : 0] uav_readdata,
- input wire uav_readdatavalid,
- input wire uav_waitrequest,
- input wire [1 : 0] uav_response,
- input wire uav_writeresponsevalid,
- // Avalon-MM Anti-master (slave)
- input reg av_write,
- input reg av_read,
- input wire [AV_ADDRESS_W -1 : 0] av_address,
- input wire [AV_BYTEENABLE_W -1 : 0] av_byteenable,
- input wire [AV_BURSTCOUNT_W -1 : 0] av_burstcount,
- input wire [AV_DATA_W -1 : 0] av_writedata,
- input wire av_begintransfer,
- input wire av_beginbursttransfer,
- input wire av_lock,
- input wire av_chipselect,
- input wire av_debugaccess,
- input wire av_clken,
- output wire [AV_DATA_W -1 : 0] av_readdata,
- output wire av_readdatavalid,
- output reg av_waitrequest,
- output reg [1 : 0] av_response,
- output reg av_writeresponsevalid
- );
- localparam BITS_PER_WORD = clog2(AV_SYMBOLS_PER_WORD);
- localparam AV_MAX_SYMBOL_BURST = flog2(pow2(AV_BURSTCOUNT_W - 1) * (AV_BURSTCOUNT_SYMBOLS ? 1 : AV_SYMBOLS_PER_WORD));
- localparam AV_MAX_SYMBOL_BURST_MINUS_ONE = AV_MAX_SYMBOL_BURST ? AV_MAX_SYMBOL_BURST - 1 : 0;
- localparam UAV_BURSTCOUNT_H_OR_31 = (UAV_BURSTCOUNT_W > 32) ? 31 : UAV_BURSTCOUNT_W - 1;
- localparam UAV_ADDRESS_H_OR_31 = (UAV_ADDRESS_W > 32) ? 31 : UAV_ADDRESS_W - 1;
- localparam BITS_PER_WORD_BURSTCOUNT = (UAV_BURSTCOUNT_W == 1) ? 0 : BITS_PER_WORD;
- localparam BITS_PER_WORD_ADDRESS = (UAV_ADDRESS_W == 1) ? 0 : BITS_PER_WORD;
- localparam ADDRESS_LOW = AV_ADDRESS_SYMBOLS ? 0 : BITS_PER_WORD_ADDRESS;
- localparam BURSTCOUNT_LOW = AV_BURSTCOUNT_SYMBOLS ? 0 : BITS_PER_WORD_BURSTCOUNT;
- localparam ADDRESS_HIGH = (UAV_ADDRESS_W > AV_ADDRESS_W + ADDRESS_LOW) ? AV_ADDRESS_W : (UAV_ADDRESS_W - ADDRESS_LOW);
- localparam BURSTCOUNT_HIGH = (UAV_BURSTCOUNT_W > AV_BURSTCOUNT_W + BURSTCOUNT_LOW) ? AV_BURSTCOUNT_W : (UAV_BURSTCOUNT_W - BURSTCOUNT_LOW);
- function integer flog2;
- input [31:0] depth;
- integer i;
- begin
- i = depth;
- if ( i <= 0 ) flog2 = 0;
- else begin
- for (flog2 = -1; i > 0; flog2 = flog2 + 1)
- i = i >> 1;
- end
- end
- endfunction // flog2
- // ------------------------------------------------------------
- // Calculates the ceil(log2()) of the input val.
- //
- // Limited to a positive 32-bit input value.
- // ------------------------------------------------------------
- function integer clog2;
- input[31:0] val;
- reg[31:0] i;
- begin
- i = 1;
- clog2 = 0;
- while (i < val) begin
- clog2 = clog2 + 1;
- i = i[30:0] << 1;
- end
- end
- endfunction
- function integer pow2;
- input [31:0] toShift;
- begin
- pow2 = 1;
- pow2 = pow2 << toShift;
- end
- endfunction // pow2
- // -------------------------------------------------
- // Assign some constants to appropriately-sized signals to
- // avoid synthesis warnings. This also helps some simulators
- // with their inferred sensitivity lists.
- //
- // The symbols per word calculation here rounds non-power of two
- // symbols to the next highest power of two, which is what we want
- // when calculating the decrementing byte count.
- // -------------------------------------------------
- wire [31 : 0] symbols_per_word_int = 2**(clog2(AV_SYMBOLS_PER_WORD[UAV_BURSTCOUNT_H_OR_31 : 0]));
- wire [UAV_BURSTCOUNT_H_OR_31 : 0] symbols_per_word = symbols_per_word_int[UAV_BURSTCOUNT_H_OR_31 : 0];
- reg internal_beginbursttransfer;
- reg internal_begintransfer;
- reg [UAV_ADDRESS_W -1 : 0] uav_address_pre;
- reg [UAV_BURSTCOUNT_W -1 : 0] uav_burstcount_pre;
- reg uav_read_pre;
- reg uav_write_pre;
- reg read_accepted;
- // -------------------------------------------------
- // Pass through signals that we don't touch
- // -------------------------------------------------
- assign uav_writedata = av_writedata;
- assign uav_byteenable = av_byteenable;
- assign uav_lock = av_lock;
- assign uav_debugaccess = av_debugaccess;
- assign uav_clken = av_clken;
- assign av_readdata = uav_readdata;
- assign av_readdatavalid = uav_readdatavalid;
- // -------------------------------------------------
- // Response signals
- // -------------------------------------------------
- always_comb begin
- if (!USE_READRESPONSE && !USE_WRITERESPONSE)
- av_response = '0;
- else
- av_response = uav_response;
- if (USE_WRITERESPONSE) begin
- av_writeresponsevalid = uav_writeresponsevalid;
- end else begin
- av_writeresponsevalid = '0;
- end
- end
- // -------------------------------------------------
- // Convert byte and word addresses into byte addresses
- // -------------------------------------------------
- always_comb begin
- uav_address_pre = {UAV_ADDRESS_W{1'b0}};
- if (AV_ADDRESS_SYMBOLS)
- uav_address_pre[(ADDRESS_HIGH ? ADDRESS_HIGH - 1 : 0) : 0] = av_address[(ADDRESS_HIGH ? ADDRESS_HIGH - 1 : 0) : 0];
- else begin
- uav_address_pre[ADDRESS_LOW + ADDRESS_HIGH - 1 : ADDRESS_LOW] = av_address[(ADDRESS_HIGH ? ADDRESS_HIGH - 1 : 0) : 0];
- end
- end
- // -------------------------------------------------
- // Convert burstcount into symbol units
- // -------------------------------------------------
- always_comb begin
- uav_burstcount_pre = symbols_per_word; // default to a single transfer
- if (USE_BURSTCOUNT) begin
- uav_burstcount_pre = {UAV_BURSTCOUNT_W{1'b0}};
- if (AV_BURSTCOUNT_SYMBOLS)
- uav_burstcount_pre[(BURSTCOUNT_HIGH ? BURSTCOUNT_HIGH - 1 : 0) :0] = av_burstcount[(BURSTCOUNT_HIGH ? BURSTCOUNT_HIGH - 1 : 0) : 0];
- else begin
- uav_burstcount_pre[UAV_BURSTCOUNT_W - 1 : BURSTCOUNT_LOW] = av_burstcount[(BURSTCOUNT_HIGH ? BURSTCOUNT_HIGH - 1 : 0) : 0];
- end
- end
- end
- // -------------------------------------------------
- // This is where we perform the per-transfer address and burstcount
- // calculations that are required by downstream modules.
- // -------------------------------------------------
- reg [UAV_ADDRESS_W -1 : 0] address_register;
- wire [UAV_BURSTCOUNT_W -1 : 0] burstcount_register;
- reg [UAV_BURSTCOUNT_W : 0] burstcount_register_lint;
- assign burstcount_register = burstcount_register_lint[UAV_BURSTCOUNT_W -1 : 0];
- always_comb begin
- uav_address = uav_address_pre;
- uav_burstcount = uav_burstcount_pre;
- if (AV_CONSTANT_BURST_BEHAVIOR && !UAV_CONSTANT_BURST_BEHAVIOR && ~internal_beginbursttransfer) begin
- uav_address = address_register;
- uav_burstcount = burstcount_register;
- end
- end
- reg first_burst_stalled;
- reg burst_stalled;
- wire [UAV_ADDRESS_W -1 : 0] combi_burst_addr_reg;
- wire [UAV_ADDRESS_W -1 : 0] combi_addr_reg;
- generate
- if (AV_LINEWRAPBURSTS && AV_MAX_SYMBOL_BURST != 0) begin
- if (AV_MAX_SYMBOL_BURST > UAV_ADDRESS_W - 1) begin
- assign combi_burst_addr_reg = { uav_address_pre[UAV_ADDRESS_W-1:0] + AV_SYMBOLS_PER_WORD[UAV_ADDRESS_W-1:0] };
- assign combi_addr_reg = { address_register[UAV_ADDRESS_W-1:0] + AV_SYMBOLS_PER_WORD[UAV_ADDRESS_W-1:0] };
- end
- else begin
- assign combi_burst_addr_reg = { uav_address_pre[UAV_ADDRESS_W - 1 : AV_MAX_SYMBOL_BURST], uav_address_pre[AV_MAX_SYMBOL_BURST_MINUS_ONE:0] + AV_SYMBOLS_PER_WORD[AV_MAX_SYMBOL_BURST_MINUS_ONE:0] };
- assign combi_addr_reg = { address_register[UAV_ADDRESS_W - 1 : AV_MAX_SYMBOL_BURST], address_register[AV_MAX_SYMBOL_BURST_MINUS_ONE:0] + AV_SYMBOLS_PER_WORD[AV_MAX_SYMBOL_BURST_MINUS_ONE:0] };
- end
- end
- else begin
- assign combi_burst_addr_reg = uav_address_pre + AV_SYMBOLS_PER_WORD[UAV_ADDRESS_H_OR_31:0];
- assign combi_addr_reg = address_register + AV_SYMBOLS_PER_WORD[UAV_ADDRESS_H_OR_31:0];
- end
- endgenerate
- always @(posedge clk, posedge reset) begin
- if (reset) begin
- address_register <= '0;
- burstcount_register_lint <= '0;
- end else begin
- address_register <= address_register;
- burstcount_register_lint <= burstcount_register_lint;
- if (internal_beginbursttransfer || first_burst_stalled) begin
- if (av_waitrequest) begin
- address_register <= uav_address_pre;
- burstcount_register_lint[UAV_BURSTCOUNT_W - 1 : 0] <= uav_burstcount_pre;
- end else begin
- address_register <= combi_burst_addr_reg;
- burstcount_register_lint <= uav_burstcount_pre - symbols_per_word;
- end
- end else if (internal_begintransfer || burst_stalled) begin
- if (~av_waitrequest) begin
- address_register <= combi_addr_reg;
- burstcount_register_lint <= burstcount_register - symbols_per_word;
- end
- end
- end
- end
- always @(posedge clk, posedge reset) begin
- if (reset) begin
- first_burst_stalled <= 1'b0;
- burst_stalled <= 1'b0;
- end else begin
- if (internal_beginbursttransfer || first_burst_stalled) begin
- if (av_waitrequest) begin
- first_burst_stalled <= 1'b1;
- end else begin
- first_burst_stalled <= 1'b0;
- end
- end else if (internal_begintransfer || burst_stalled) begin
- if (~av_waitrequest) begin
- burst_stalled <= 1'b0;
- end else begin
- burst_stalled <= 1'b1;
- end
- end
- end
- end
- // -------------------------------------------------
- // Waitrequest translation
- // -------------------------------------------------
- always @(posedge clk, posedge reset) begin
- if (reset)
- read_accepted <= 1'b0;
- else begin
- read_accepted <= read_accepted;
- if (read_accepted == 0)
- read_accepted <= av_waitrequest ? uav_read_pre & ~uav_waitrequest : 1'b0;
- else if (read_accepted == 1 && uav_readdatavalid == 1) // reset acceptance only when rdv arrives
- read_accepted <= 1'b0;
- end
- end
- reg write_accepted = 0;
- generate if (AV_REGISTERINCOMINGSIGNALS) begin
- always @(posedge clk, posedge reset) begin
- if (reset)
- write_accepted <= 1'b0;
- else begin
- write_accepted <=
- ~av_waitrequest ? 1'b0 :
- uav_write & ~uav_waitrequest? 1'b1 :
- write_accepted;
- end
- end
- end endgenerate
- always_comb begin
- av_waitrequest = uav_waitrequest;
- if (USE_READDATAVALID == 0) begin
- av_waitrequest = uav_read_pre ? ~uav_readdatavalid : uav_waitrequest;
- end
- if (AV_REGISTERINCOMINGSIGNALS) begin
- av_waitrequest =
- uav_read_pre ? ~uav_readdatavalid :
- uav_write_pre ? (internal_begintransfer | uav_waitrequest) & ~write_accepted :
- 1'b1;
- end
- if (USE_WAITREQUEST == 0) begin
- av_waitrequest = 0;
- end
- end
- // -------------------------------------------------
- // Determine the output read and write signals from
- // the read/write/chipselect input signals.
- // -------------------------------------------------
- always_comb begin
- uav_write = 1'b0;
- uav_write_pre = 1'b0;
- uav_read = 1'b0;
- uav_read_pre = 1'b0;
- if (!USE_CHIPSELECT) begin
- if (USE_READ) begin
- uav_read_pre = av_read;
- end
-
- if (USE_WRITE) begin
- uav_write_pre = av_write;
- end
- end else begin
- if (!USE_WRITE && USE_READ) begin
- uav_write_pre = av_chipselect & ~av_read;
- uav_read_pre = av_read;
- end else if (!USE_READ && USE_WRITE) begin
- uav_write_pre = av_write;
- uav_read_pre = av_chipselect & ~av_write;
- end else if (USE_READ && USE_WRITE) begin
- uav_write_pre = av_write;
- uav_read_pre = av_read;
- end
- end
- if (USE_READDATAVALID == 0)
- uav_read = uav_read_pre & ~read_accepted;
- else
- uav_read = uav_read_pre;
- if (AV_REGISTERINCOMINGSIGNALS == 0)
- uav_write = uav_write_pre;
- else
- uav_write = uav_write_pre & ~write_accepted;
- end
- // -------------------------------------------------
- // Begintransfer assignment
- // -------------------------------------------------
- reg end_begintransfer;
- always_comb begin
- if (USE_BEGINTRANSFER) begin
- internal_begintransfer = av_begintransfer;
- end else begin
- internal_begintransfer = ( uav_write | uav_read ) & ~end_begintransfer;
- end
- end
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- end_begintransfer <= 1'b0;
- end else begin
- if (internal_begintransfer == 1 && uav_waitrequest)
- end_begintransfer <= 1'b1;
- else if (uav_waitrequest)
- end_begintransfer <= end_begintransfer;
- else
- end_begintransfer <= 1'b0;
- end
- end
- // -------------------------------------------------
- // Beginbursttransfer assignment
- // -------------------------------------------------
- reg end_beginbursttransfer;
- wire last_burst_transfer_pre;
- wire last_burst_transfer_reg;
- wire last_burst_transfer;
- // compare values before the mux to shorten critical path; benchmark before changing
- assign last_burst_transfer_pre = (uav_burstcount_pre == symbols_per_word);
- assign last_burst_transfer_reg = (burstcount_register == symbols_per_word);
- assign last_burst_transfer = (internal_beginbursttransfer) ? last_burst_transfer_pre : last_burst_transfer_reg;
- always_comb begin
- if (USE_BEGINBURSTTRANSFER) begin
- internal_beginbursttransfer = av_beginbursttransfer;
- end else begin
- internal_beginbursttransfer = uav_read ? internal_begintransfer : internal_begintransfer && ~end_beginbursttransfer;
- end
- end
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- end_beginbursttransfer <= 1'b0;
- end else begin
- end_beginbursttransfer <= end_beginbursttransfer;
- if (last_burst_transfer && internal_begintransfer || uav_read) begin
- end_beginbursttransfer <= 1'b0;
- end
- else if (uav_write && internal_begintransfer) begin
- end_beginbursttransfer <= 1'b1;
- end
- end
- end
- // synthesis translate_off
- // ------------------------------------------------
- // check_1 : for waitrequest signal violation
- // Ensure that when waitreqeust is asserted, the master is not allowed to change its controls
- // Exception : begintransfer / beginbursttransfer
- // : previously not in any transaction (idle)
- // Note : Not checking clken which is not exactly part of Avalon controls/inputs
- // : Not using system verilog assertions (seq/prop) since it is not supported if using Modelsim_SE
- // ------------------------------------------------
- reg av_waitrequest_r;
- reg av_write_r, av_read_r, av_lock_r, av_chipselect_r, av_debugaccess_r;
- reg [AV_ADDRESS_W-1:0] av_address_r;
- reg [AV_BYTEENABLE_W-1:0] av_byteenable_r;
- reg [AV_BURSTCOUNT_W-1:0] av_burstcount_r;
- reg [AV_DATA_W-1:0] av_writedata_r;
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- av_waitrequest_r <= '0;
- av_write_r <= '0;
- av_read_r <= '0;
- av_lock_r <= '0;
- av_chipselect_r <= '0;
- av_debugaccess_r <= '0;
- av_address_r <= '0;
- av_byteenable_r <= '0;
- av_burstcount_r <= '0;
- av_writedata_r <= '0;
- end else begin
- av_waitrequest_r <= av_waitrequest;
- av_write_r <= av_write;
- av_read_r <= av_read;
- av_lock_r <= av_lock;
- av_chipselect_r <= av_chipselect;
- av_debugaccess_r <= av_debugaccess;
- av_address_r <= av_address;
- av_byteenable_r <= av_byteenable;
- av_burstcount_r <= av_burstcount;
- av_writedata_r <= av_writedata;
-
- if (
- av_waitrequest_r && // When waitrequest is asserted
- (
- (av_write != av_write_r) || // Checks that : Input controls/data does not change
- (av_read != av_read_r) ||
- (av_lock != av_lock_r) ||
- (av_debugaccess != av_debugaccess_r) ||
- (av_address != av_address_r) ||
- (av_byteenable != av_byteenable_r) ||
- (av_burstcount != av_burstcount_r)
- ) &&
- (av_write_r | av_read_r) && // Check only when : previously initiated a write/read
- (!USE_CHIPSELECT | av_chipselect_r) // and chipselect was asserted (or unused)
- ) begin
- $display( "%t: %m: Error: Input controls/data changed while av_waitrequest is asserted.", $time());
- $display("av_address %x --> %x", av_address_r , av_address );
- $display("av_byteenable %x --> %x", av_byteenable_r , av_byteenable );
- $display("av_burstcount %x --> %x", av_burstcount_r , av_burstcount );
- $display("av_writedata %x --> %x", av_writedata_r , av_writedata );
- $display("av_write %x --> %x", av_write_r , av_write );
- $display("av_read %x --> %x", av_read_r , av_read );
- $display("av_lock %x --> %x", av_lock_r , av_lock );
- $display("av_chipselect %x --> %x", av_chipselect_r , av_chipselect );
- $display("av_debugaccess %x --> %x", av_debugaccess_r , av_debugaccess );
- end
- end
-
- // end check_1
-
- end
- // synthesis translate_on
- endmodule
|