123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915 |
- // -----------------------------------------------------------
- // Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
- // use of Altera Corporation's design tools, logic functions and other
- // software and tools, and its AMPP partner logic functions, and any
- // output files any of the foregoing (including device programming or
- // simulation files), and any associated documentation or information are
- // expressly subject to the terms and conditions of the Altera Program
- // License Subscription Agreement or other applicable license agreement,
- // including, without limitation, that your use is for the sole purpose
- // of programming logic devices manufactured by Altera and sold by Altera
- // or its authorized distributors. Please refer to the applicable
- // agreement for further details.
- //
- // Description: Single clock Avalon-ST FIFO.
- // -----------------------------------------------------------
- `timescale 1 ns / 1 ns
- //altera message_off 10036
- module altera_avalon_sc_fifo
- #(
- // --------------------------------------------------
- // Parameters
- // --------------------------------------------------
- parameter SYMBOLS_PER_BEAT = 1,
- parameter BITS_PER_SYMBOL = 8,
- parameter FIFO_DEPTH = 16,
- parameter CHANNEL_WIDTH = 0,
- parameter ERROR_WIDTH = 0,
- parameter USE_PACKETS = 0,
- parameter USE_FILL_LEVEL = 0,
- parameter USE_STORE_FORWARD = 0,
- parameter USE_ALMOST_FULL_IF = 0,
- parameter USE_ALMOST_EMPTY_IF = 0,
- // --------------------------------------------------
- // Empty latency is defined as the number of cycles
- // required for a write to deassert the empty flag.
- // For example, a latency of 1 means that the empty
- // flag is deasserted on the cycle after a write.
- //
- // Another way to think of it is the latency for a
- // write to propagate to the output.
- //
- // An empty latency of 0 implies lookahead, which is
- // only implemented for the register-based FIFO.
- // --------------------------------------------------
- parameter EMPTY_LATENCY = 3,
- parameter USE_MEMORY_BLOCKS = 1,
- // --------------------------------------------------
- // Internal Parameters
- // --------------------------------------------------
- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
- parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
- )
- (
- // --------------------------------------------------
- // Ports
- // --------------------------------------------------
- input clk,
- input reset,
- input [DATA_WIDTH-1: 0] in_data,
- input in_valid,
- input in_startofpacket,
- input in_endofpacket,
- input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
- input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
- input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
- output in_ready,
- output [DATA_WIDTH-1 : 0] out_data,
- output reg out_valid,
- output out_startofpacket,
- output out_endofpacket,
- output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
- output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
- output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
- input out_ready,
- input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
- input csr_write,
- input csr_read,
- input [31 : 0] csr_writedata,
- output reg [31 : 0] csr_readdata,
- output wire almost_full_data,
- output wire almost_empty_data
- );
- // --------------------------------------------------
- // Local Parameters
- // --------------------------------------------------
- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
- localparam DEPTH = FIFO_DEPTH;
- localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
- localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
- 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
- DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
- // --------------------------------------------------
- // Internal Signals
- // --------------------------------------------------
- genvar i;
- reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
- reg [ADDR_WIDTH-1 : 0] wr_ptr;
- reg [ADDR_WIDTH-1 : 0] rd_ptr;
- reg [DEPTH-1 : 0] mem_used;
- wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
- wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
- wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
- wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
- wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
- wire read;
- wire write;
- reg empty;
- reg next_empty;
- reg full;
- reg next_full;
- wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
- wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
- wire [PAYLOAD_WIDTH-1 : 0] in_payload;
- reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
- reg [PAYLOAD_WIDTH-1 : 0] out_payload;
- reg internal_out_valid;
- wire internal_out_ready;
- reg [ADDR_WIDTH : 0] fifo_fill_level;
- reg [ADDR_WIDTH : 0] fill_level;
- reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
- wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
- reg [23:0] almost_full_threshold;
- reg [23:0] almost_empty_threshold;
- reg [23:0] cut_through_threshold;
- reg [15:0] pkt_cnt;
- reg drop_on_error_en;
- reg error_in_pkt;
- reg pkt_has_started;
- reg sop_has_left_fifo;
- reg fifo_too_small_r;
- reg pkt_cnt_eq_zero;
- reg pkt_cnt_eq_one;
- wire wait_for_threshold;
- reg pkt_mode;
- wire wait_for_pkt;
- wire ok_to_forward;
- wire in_pkt_eop_arrive;
- wire out_pkt_leave;
- wire in_pkt_start;
- wire in_pkt_error;
- wire drop_on_error;
- wire fifo_too_small;
- wire out_pkt_sop_leave;
- wire [31:0] max_fifo_size;
- reg fifo_fill_level_lt_cut_through_threshold;
- // --------------------------------------------------
- // Define Payload
- //
- // Icky part where we decide which signals form the
- // payload to the FIFO with generate blocks.
- // --------------------------------------------------
- generate
- if (EMPTY_WIDTH > 0) begin : gen_blk1
- assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
- assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
- end
- else begin : gen_blk1_else
- assign out_empty = in_error;
- assign in_packet_signals = {in_startofpacket, in_endofpacket};
- assign {out_startofpacket, out_endofpacket} = out_packet_signals;
- end
- endgenerate
- generate
- if (USE_PACKETS) begin : gen_blk2
- if (ERROR_WIDTH > 0) begin : gen_blk3
- if (CHANNEL_WIDTH > 0) begin : gen_blk4
- assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
- assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
- end
- else begin : gen_blk4_else
- assign out_channel = in_channel;
- assign in_payload = {in_packet_signals, in_data, in_error};
- assign {out_packet_signals, out_data, out_error} = out_payload;
- end
- end
- else begin : gen_blk3_else
- assign out_error = in_error;
- if (CHANNEL_WIDTH > 0) begin : gen_blk5
- assign in_payload = {in_packet_signals, in_data, in_channel};
- assign {out_packet_signals, out_data, out_channel} = out_payload;
- end
- else begin : gen_blk5_else
- assign out_channel = in_channel;
- assign in_payload = {in_packet_signals, in_data};
- assign {out_packet_signals, out_data} = out_payload;
- end
- end
- end
- else begin : gen_blk2_else
- assign out_packet_signals = 0;
- if (ERROR_WIDTH > 0) begin : gen_blk6
- if (CHANNEL_WIDTH > 0) begin : gen_blk7
- assign in_payload = {in_data, in_error, in_channel};
- assign {out_data, out_error, out_channel} = out_payload;
- end
- else begin : gen_blk7_else
- assign out_channel = in_channel;
- assign in_payload = {in_data, in_error};
- assign {out_data, out_error} = out_payload;
- end
- end
- else begin : gen_blk6_else
- assign out_error = in_error;
- if (CHANNEL_WIDTH > 0) begin : gen_blk8
- assign in_payload = {in_data, in_channel};
- assign {out_data, out_channel} = out_payload;
- end
- else begin : gen_blk8_else
- assign out_channel = in_channel;
- assign in_payload = in_data;
- assign out_data = out_payload;
- end
- end
- end
- endgenerate
- // --------------------------------------------------
- // Memory-based FIFO storage
- //
- // To allow a ready latency of 0, the read index is
- // obtained from the next read pointer and memory
- // outputs are unregistered.
- //
- // If the empty latency is 1, we infer bypass logic
- // around the memory so writes propagate to the
- // outputs on the next cycle.
- //
- // Do not change the way this is coded: Quartus needs
- // a perfect match to the template, and any attempt to
- // refactor the two always blocks into one will break
- // memory inference.
- // --------------------------------------------------
- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
- if (EMPTY_LATENCY == 1) begin : gen_blk10
- always @(posedge clk) begin
- if (in_valid && in_ready)
- mem[wr_ptr] = in_payload;
- internal_out_payload = mem[mem_rd_ptr];
- end
- end else begin : gen_blk10_else
- always @(posedge clk) begin
- if (in_valid && in_ready)
- mem[wr_ptr] <= in_payload;
- internal_out_payload <= mem[mem_rd_ptr];
- end
- end
- assign mem_rd_ptr = next_rd_ptr;
-
- end else begin : gen_blk9_else
- // --------------------------------------------------
- // Register-based FIFO storage
- //
- // Uses a shift register as the storage element. Each
- // shift register slot has a bit which indicates if
- // the slot is occupied (credit to Sam H for the idea).
- // The occupancy bits are contiguous and start from the
- // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
- // FIFO.
- //
- // Each slot is enabled during a read or when it
- // is unoccupied. New data is always written to every
- // going-to-be-empty slot (we keep track of which ones
- // are actually useful with the occupancy bits). On a
- // read we shift occupied slots.
- //
- // The exception is the last slot, which always gets
- // new data when it is unoccupied.
- // --------------------------------------------------
- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- mem[i] <= 0;
- end
- else if (read || !mem_used[i]) begin
- if (!mem_used[i+1])
- mem[i] <= in_payload;
- else
- mem[i] <= mem[i+1];
- end
- end
- end
- always @(posedge clk, posedge reset) begin
- if (reset) begin
- mem[DEPTH-1] <= 0;
- end
- else begin
- if (DEPTH == 1) begin
- if (write)
- mem[DEPTH-1] <= in_payload;
- end
- else if (!mem_used[DEPTH-1])
- mem[DEPTH-1] <= in_payload;
- end
- end
- end
- endgenerate
- assign read = internal_out_ready && internal_out_valid && ok_to_forward;
- assign write = in_ready && in_valid;
- // --------------------------------------------------
- // Pointer Management
- // --------------------------------------------------
- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
- assign incremented_wr_ptr = wr_ptr + 1'b1;
- assign incremented_rd_ptr = rd_ptr + 1'b1;
- assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
- assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- wr_ptr <= 0;
- rd_ptr <= 0;
- end
- else begin
- wr_ptr <= next_wr_ptr;
- rd_ptr <= next_rd_ptr;
- end
- end
- end else begin : gen_blk11_else
- // --------------------------------------------------
- // Shift Register Occupancy Bits
- //
- // Consider a 4-deep FIFO with 2 entries: 0011
- // On a read and write, do not modify the bits.
- // On a write, left-shift the bits to get 0111.
- // On a read, right-shift the bits to get 0001.
- //
- // Also, on a write we set bit0 (the head), while
- // clearing the tail on a read.
- // --------------------------------------------------
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- mem_used[0] <= 0;
- end
- else begin
- if (write ^ read) begin
- if (write)
- mem_used[0] <= 1;
- else if (read) begin
- if (DEPTH > 1)
- mem_used[0] <= mem_used[1];
- else
- mem_used[0] <= 0;
- end
- end
- end
- end
- if (DEPTH > 1) begin : gen_blk12
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- mem_used[DEPTH-1] <= 0;
- end
- else begin
- if (write ^ read) begin
- mem_used[DEPTH-1] <= 0;
- if (write)
- mem_used[DEPTH-1] <= mem_used[DEPTH-2];
- end
- end
- end
- end
-
- for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
- always @(posedge clk, posedge reset) begin
- if (reset) begin
- mem_used[i] <= 0;
- end
- else begin
- if (write ^ read) begin
- if (write)
- mem_used[i] <= mem_used[i-1];
- else if (read)
- mem_used[i] <= mem_used[i+1];
- end
- end
- end
- end
-
- end
- endgenerate
- // --------------------------------------------------
- // Memory FIFO Status Management
- //
- // Generates the full and empty signals from the
- // pointers. The FIFO is full when the next write
- // pointer will be equal to the read pointer after
- // a write. Reading from a FIFO clears full.
- //
- // The FIFO is empty when the next read pointer will
- // be equal to the write pointer after a read. Writing
- // to a FIFO clears empty.
- //
- // A simultaneous read and write must not change any of
- // the empty or full flags unless there is a drop on error event.
- // --------------------------------------------------
- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
- always @* begin
- next_full = full;
- next_empty = empty;
-
- if (read && !write) begin
- next_full = 1'b0;
-
- if (incremented_rd_ptr == wr_ptr)
- next_empty = 1'b1;
- end
-
- if (write && !read) begin
- if (!drop_on_error)
- next_empty = 1'b0;
- else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
- next_empty = 1'b1;
-
- if (incremented_wr_ptr == rd_ptr && !drop_on_error)
- next_full = 1'b1;
- end
- if (write && read && drop_on_error) begin
- if (curr_sop_ptr == next_rd_ptr)
- next_empty = 1'b1;
- end
- end
-
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- empty <= 1;
- full <= 0;
- end
- else begin
- empty <= next_empty;
- full <= next_full;
- end
- end
- end else begin : gen_blk13_else
- // --------------------------------------------------
- // Register FIFO Status Management
- //
- // Full when the tail occupancy bit is 1. Empty when
- // the head occupancy bit is 0.
- // --------------------------------------------------
- always @* begin
- full = mem_used[DEPTH-1];
- empty = !mem_used[0];
- // ------------------------------------------
- // For a single slot FIFO, reading clears the
- // full status immediately.
- // ------------------------------------------
- if (DEPTH == 1)
- full = mem_used[0] && !read;
- internal_out_payload = mem[0];
- // ------------------------------------------
- // Writes clear empty immediately for lookahead modes.
- // Note that we use in_valid instead of write to avoid
- // combinational loops (in lookahead mode, qualifying
- // with in_ready is meaningless).
- //
- // In a 1-deep FIFO, a possible combinational loop runs
- // from write -> out_valid -> out_ready -> write
- // ------------------------------------------
- if (EMPTY_LATENCY == 0) begin
- empty = !mem_used[0] && !in_valid;
- if (!mem_used[0] && in_valid)
- internal_out_payload = in_payload;
- end
- end
- end
- endgenerate
- // --------------------------------------------------
- // Avalon-ST Signals
- //
- // The in_ready signal is straightforward.
- //
- // To match memory latency when empty latency > 1,
- // out_valid assertions must be delayed by one clock
- // cycle.
- //
- // Note: out_valid deassertions must not be delayed or
- // the FIFO will underflow.
- // --------------------------------------------------
- assign in_ready = !full;
- assign internal_out_ready = out_ready || !out_valid;
- generate if (EMPTY_LATENCY > 1) begin : gen_blk14
- always @(posedge clk or posedge reset) begin
- if (reset)
- internal_out_valid <= 0;
- else begin
- internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
- if (read) begin
- if (incremented_rd_ptr == wr_ptr)
- internal_out_valid <= 1'b0;
- end
- end
- end
- end else begin : gen_blk14_else
- always @* begin
- internal_out_valid = !empty & ok_to_forward;
- end
- end
- endgenerate
- // --------------------------------------------------
- // Single Output Pipeline Stage
- //
- // This output pipeline stage is enabled if the FIFO's
- // empty latency is set to 3 (default). It is disabled
- // for all other allowed latencies.
- //
- // Reason: The memory outputs are unregistered, so we have to
- // register the output or fmax will drop if combinatorial
- // logic is present on the output datapath.
- //
- // Q: The Avalon-ST spec says that I have to register my outputs
- // But isn't the memory counted as a register?
- // A: The path from the address lookup to the memory output is
- // slow. Registering the memory outputs is a good idea.
- //
- // The registers get packed into the memory by the fitter
- // which means minimal resources are consumed (the result
- // is a altsyncram with registered outputs, available on
- // all modern Altera devices).
- //
- // This output stage acts as an extra slot in the FIFO,
- // and complicates the fill level.
- // --------------------------------------------------
- generate if (EMPTY_LATENCY == 3) begin : gen_blk15
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- out_valid <= 0;
- out_payload <= 0;
- end
- else begin
- if (internal_out_ready) begin
- out_valid <= internal_out_valid & ok_to_forward;
- out_payload <= internal_out_payload;
- end
- end
- end
- end
- else begin : gen_blk15_else
- always @* begin
- out_valid = internal_out_valid;
- out_payload = internal_out_payload;
- end
- end
- endgenerate
- // --------------------------------------------------
- // Fill Level
- //
- // The fill level is calculated from the next write
- // and read pointers to avoid unnecessary latency
- // and logic.
- //
- // However, if the store-and-forward mode of the FIFO
- // is enabled, the fill level is an up-down counter
- // for fmax optimization reasons.
- //
- // If the output pipeline is enabled, the fill level
- // must account for it, or we'll always be off by one.
- // This may, or may not be important depending on the
- // application.
- //
- // For now, we'll always calculate the exact fill level
- // at the cost of an extra adder when the output stage
- // is enabled.
- // --------------------------------------------------
- generate if (USE_FILL_LEVEL) begin : gen_blk16
- wire [31:0] depth32;
- assign depth32 = DEPTH;
- if (USE_STORE_FORWARD) begin
- reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
-
- // --------------------------------------------------
- // We only drop on endofpacket. As long as we don't add to the fill
- // level on the dropped endofpacket cycle, we can simply subtract
- // (packet length - 1) from the fill level for dropped packets.
- // --------------------------------------------------
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- curr_packet_len_less_one <= 0;
- end else begin
- if (write) begin
- curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
- if (in_endofpacket)
- curr_packet_len_less_one <= 0;
- end
- end
- end
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- fifo_fill_level <= 0;
- end else if (drop_on_error) begin
- fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
- if (read)
- fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
- end else if (write && !read) begin
- fifo_fill_level <= fifo_fill_level + 1'b1;
- end else if (read && !write) begin
- fifo_fill_level <= fifo_fill_level - 1'b1;
- end
- end
- end else begin
- always @(posedge clk or posedge reset) begin
- if (reset)
- fifo_fill_level <= 0;
- else if (next_full & !drop_on_error)
- fifo_fill_level <= depth32[ADDR_WIDTH:0];
- else begin
- fifo_fill_level[ADDR_WIDTH] <= 1'b0;
- fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
- end
- end
- end
- always @* begin
- fill_level = fifo_fill_level;
- if (EMPTY_LATENCY == 3)
- fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
- end
- end
- else begin : gen_blk16_else
- always @* begin
- fill_level = 0;
- end
- end
- endgenerate
- generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
- assign almost_full_data = (fill_level >= almost_full_threshold);
- end
- else
- assign almost_full_data = 0;
- endgenerate
- generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
- assign almost_empty_data = (fill_level <= almost_empty_threshold);
- end
- else
- assign almost_empty_data = 0;
- endgenerate
- // --------------------------------------------------
- // Avalon-MM Status & Control Connection Point
- //
- // Register map:
- //
- // | Addr | RW | 31 - 0 |
- // | 0 | R | Fill level |
- //
- // The registering of this connection point means
- // that there is a cycle of latency between
- // reads/writes and the updating of the fill level.
- // --------------------------------------------------
- generate if (USE_STORE_FORWARD) begin : gen_blk19
- assign max_fifo_size = FIFO_DEPTH - 1;
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- almost_full_threshold <= max_fifo_size[23 : 0];
- almost_empty_threshold <= 0;
- cut_through_threshold <= 0;
- drop_on_error_en <= 0;
- csr_readdata <= 0;
- pkt_mode <= 1'b1;
- end
- else begin
- if (csr_read) begin
- csr_readdata <= 32'b0;
- if (csr_address == 5)
- csr_readdata <= {31'b0, drop_on_error_en};
- else if (csr_address == 4)
- csr_readdata <= {8'b0, cut_through_threshold};
- else if (csr_address == 3)
- csr_readdata <= {8'b0, almost_empty_threshold};
- else if (csr_address == 2)
- csr_readdata <= {8'b0, almost_full_threshold};
- else if (csr_address == 0)
- csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
- end
- else if (csr_write) begin
- if(csr_address == 3'b101)
- drop_on_error_en <= csr_writedata[0];
- else if(csr_address == 3'b100) begin
- cut_through_threshold <= csr_writedata[23:0];
- pkt_mode <= (csr_writedata[23:0] == 0);
- end
- else if(csr_address == 3'b011)
- almost_empty_threshold <= csr_writedata[23:0];
- else if(csr_address == 3'b010)
- almost_full_threshold <= csr_writedata[23:0];
- end
- end
- end
- end
- else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
- assign max_fifo_size = FIFO_DEPTH - 1;
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- almost_full_threshold <= max_fifo_size[23 : 0];
- almost_empty_threshold <= 0;
- csr_readdata <= 0;
- end
- else begin
- if (csr_read) begin
- csr_readdata <= 32'b0;
- if (csr_address == 3)
- csr_readdata <= {8'b0, almost_empty_threshold};
- else if (csr_address == 2)
- csr_readdata <= {8'b0, almost_full_threshold};
- else if (csr_address == 0)
- csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
- end
- else if (csr_write) begin
- if(csr_address == 3'b011)
- almost_empty_threshold <= csr_writedata[23:0];
- else if(csr_address == 3'b010)
- almost_full_threshold <= csr_writedata[23:0];
- end
- end
- end
- end
- else begin : gen_blk19_else2
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- csr_readdata <= 0;
- end
- else if (csr_read) begin
- csr_readdata <= 0;
- if (csr_address == 0)
- csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
- end
- end
- end
- endgenerate
- // --------------------------------------------------
- // Store and forward logic
- // --------------------------------------------------
- // if the fifo gets full before the entire packet or the
- // cut-threshold condition is met then start sending out
- // data in order to avoid dead-lock situation
- generate if (USE_STORE_FORWARD) begin : gen_blk20
- assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
- assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
- assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
- ~wait_for_threshold) | fifo_too_small_r;
- assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
- assign in_pkt_start = in_valid & in_ready & in_startofpacket;
- assign in_pkt_error = in_valid & in_ready & |in_error;
- assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
- assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
- assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
- // count packets coming and going into the fifo
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- pkt_cnt <= 0;
- pkt_has_started <= 0;
- sop_has_left_fifo <= 0;
- fifo_too_small_r <= 0;
- pkt_cnt_eq_zero <= 1'b1;
- pkt_cnt_eq_one <= 1'b0;
- fifo_fill_level_lt_cut_through_threshold <= 1'b1;
- end
- else begin
- fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
- fifo_too_small_r <= fifo_too_small;
- if( in_pkt_eop_arrive )
- sop_has_left_fifo <= 1'b0;
- else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
- sop_has_left_fifo <= 1'b1;
- if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
- pkt_cnt <= pkt_cnt + 1'b1;
- pkt_cnt_eq_zero <= 0;
- if (pkt_cnt == 0)
- pkt_cnt_eq_one <= 1'b1;
- else
- pkt_cnt_eq_one <= 1'b0;
- end
- else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
- pkt_cnt <= pkt_cnt - 1'b1;
- if (pkt_cnt == 1)
- pkt_cnt_eq_zero <= 1'b1;
- else
- pkt_cnt_eq_zero <= 1'b0;
- if (pkt_cnt == 2)
- pkt_cnt_eq_one <= 1'b1;
- else
- pkt_cnt_eq_one <= 1'b0;
- end
- if (in_pkt_start)
- pkt_has_started <= 1'b1;
- else if (in_pkt_eop_arrive)
- pkt_has_started <= 1'b0;
- end
- end
- // drop on error logic
- always @(posedge clk or posedge reset) begin
- if (reset) begin
- sop_ptr <= 0;
- error_in_pkt <= 0;
- end
- else begin
- // save the location of the SOP
- if ( in_pkt_start )
- sop_ptr <= wr_ptr;
- // remember if error in pkt
- // log error only if packet has already started
- if (in_pkt_eop_arrive)
- error_in_pkt <= 1'b0;
- else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
- error_in_pkt <= 1'b1;
- end
- end
- assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
- ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
- assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
- end
- else begin : gen_blk20_else
- assign ok_to_forward = 1'b1;
- assign drop_on_error = 1'b0;
- if (ADDR_WIDTH <= 1)
- assign curr_sop_ptr = 1'b0;
- else
- assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
- end
- endgenerate
- // --------------------------------------------------
- // Calculates the log2ceil of the input value
- // --------------------------------------------------
- function integer log2ceil;
- input integer val;
- reg[31:0] i;
- begin
- i = 1;
- log2ceil = 0;
- while (i < val) begin
- log2ceil = log2ceil + 1;
- i = i[30:0] << 1;
- end
- end
- endfunction
- endmodule
|