123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- /* DHT library
- MIT license
- written by Adafruit Industries
- */
- #include "DHT.h"
- #define MIN_INTERVAL 2000
- DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
- _pin = pin;
- _type = type;
- #ifdef __AVR
- _bit = digitalPinToBitMask(pin);
- _port = digitalPinToPort(pin);
- #endif
- _maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for
- // reading pulses from DHT sensor.
- // Note that count is now ignored as the DHT reading algorithm adjusts itself
- // basd on the speed of the processor.
- }
- void DHT::begin(void) {
- // set up the pins!
- pinMode(_pin, INPUT_PULLUP);
- // Using this value makes sure that millis() - lastreadtime will be
- // >= MIN_INTERVAL right away. Note that this assignment wraps around,
- // but so will the subtraction.
- _lastreadtime = -MIN_INTERVAL;
- DEBUG_PRINT("Max clock cycles: "); DEBUG_PRINTLN(_maxcycles, DEC);
- }
- //boolean S == Scale. True == Fahrenheit; False == Celcius
- float DHT::readTemperature(bool S, bool force) {
- float f = NAN;
- if (read(force)) {
- switch (_type) {
- case DHT11:
- f = data[2];
- if(S) {
- f = convertCtoF(f);
- }
- break;
- case DHT22:
- case DHT21:
- f = data[2] & 0x7F;
- f *= 256;
- f += data[3];
- f *= 0.1;
- if (data[2] & 0x80) {
- f *= -1;
- }
- if(S) {
- f = convertCtoF(f);
- }
- break;
- }
- }
- return f;
- }
- float DHT::convertCtoF(float c) {
- return c * 1.8 + 32;
- }
- float DHT::convertFtoC(float f) {
- return (f - 32) * 0.55555;
- }
- float DHT::readHumidity(bool force) {
- float f = NAN;
- if (read()) {
- switch (_type) {
- case DHT11:
- f = data[0];
- break;
- case DHT22:
- case DHT21:
- f = data[0];
- f *= 256;
- f += data[1];
- f *= 0.1;
- break;
- }
- }
- return f;
- }
- //boolean isFahrenheit: True == Fahrenheit; False == Celcius
- float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
- // Using both Rothfusz and Steadman's equations
- // http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
- float hi;
- if (!isFahrenheit)
- temperature = convertCtoF(temperature);
- hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) + (percentHumidity * 0.094));
- if (hi > 79) {
- hi = -42.379 +
- 2.04901523 * temperature +
- 10.14333127 * percentHumidity +
- -0.22475541 * temperature*percentHumidity +
- -0.00683783 * pow(temperature, 2) +
- -0.05481717 * pow(percentHumidity, 2) +
- 0.00122874 * pow(temperature, 2) * percentHumidity +
- 0.00085282 * temperature*pow(percentHumidity, 2) +
- -0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
- if((percentHumidity < 13) && (temperature >= 80.0) && (temperature <= 112.0))
- hi -= ((13.0 - percentHumidity) * 0.25) * sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
- else if((percentHumidity > 85.0) && (temperature >= 80.0) && (temperature <= 87.0))
- hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
- }
- return isFahrenheit ? hi : convertFtoC(hi);
- }
- boolean DHT::read(bool force) {
- // Check if sensor was read less than two seconds ago and return early
- // to use last reading.
- uint32_t currenttime = millis();
- if (!force && ((currenttime - _lastreadtime) < 2000)) {
- return _lastresult; // return last correct measurement
- }
- _lastreadtime = currenttime;
- // Reset 40 bits of received data to zero.
- data[0] = data[1] = data[2] = data[3] = data[4] = 0;
- // Send start signal. See DHT datasheet for full signal diagram:
- // http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
- // Go into high impedence state to let pull-up raise data line level and
- // start the reading process.
- digitalWrite(_pin, HIGH);
- delay(250);
- // First set data line low for 20 milliseconds.
- pinMode(_pin, OUTPUT);
- digitalWrite(_pin, LOW);
- delay(20);
- uint32_t cycles[80];
- {
- // Turn off interrupts temporarily because the next sections are timing critical
- // and we don't want any interruptions.
- InterruptLock lock;
- // End the start signal by setting data line high for 40 microseconds.
- digitalWrite(_pin, HIGH);
- delayMicroseconds(40);
- // Now start reading the data line to get the value from the DHT sensor.
- pinMode(_pin, INPUT_PULLUP);
- delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
- // First expect a low signal for ~80 microseconds followed by a high signal
- // for ~80 microseconds again.
- if (expectPulse(LOW) == 0) {
- DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
- _lastresult = false;
- return _lastresult;
- }
- if (expectPulse(HIGH) == 0) {
- DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
- _lastresult = false;
- return _lastresult;
- }
- // Now read the 40 bits sent by the sensor. Each bit is sent as a 50
- // microsecond low pulse followed by a variable length high pulse. If the
- // high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
- // then it's a 1. We measure the cycle count of the initial 50us low pulse
- // and use that to compare to the cycle count of the high pulse to determine
- // if the bit is a 0 (high state cycle count < low state cycle count), or a
- // 1 (high state cycle count > low state cycle count). Note that for speed all
- // the pulses are read into a array and then examined in a later step.
- for (int i=0; i<80; i+=2) {
- cycles[i] = expectPulse(LOW);
- cycles[i+1] = expectPulse(HIGH);
- }
- } // Timing critical code is now complete.
- // Inspect pulses and determine which ones are 0 (high state cycle count < low
- // state cycle count), or 1 (high state cycle count > low state cycle count).
- for (int i=0; i<40; ++i) {
- uint32_t lowCycles = cycles[2*i];
- uint32_t highCycles = cycles[2*i+1];
- if ((lowCycles == 0) || (highCycles == 0)) {
- DEBUG_PRINTLN(F("Timeout waiting for pulse."));
- _lastresult = false;
- return _lastresult;
- }
- data[i/8] <<= 1;
- // Now compare the low and high cycle times to see if the bit is a 0 or 1.
- if (highCycles > lowCycles) {
- // High cycles are greater than 50us low cycle count, must be a 1.
- data[i/8] |= 1;
- }
- // Else high cycles are less than (or equal to, a weird case) the 50us low
- // cycle count so this must be a zero. Nothing needs to be changed in the
- // stored data.
- }
- DEBUG_PRINTLN(F("Received:"));
- DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", "));
- DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", "));
- DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", "));
- DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", "));
- DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? "));
- DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
- // Check we read 40 bits and that the checksum matches.
- if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
- _lastresult = true;
- return _lastresult;
- }
- else {
- DEBUG_PRINTLN(F("Checksum failure!"));
- _lastresult = false;
- return _lastresult;
- }
- }
- // Expect the signal line to be at the specified level for a period of time and
- // return a count of loop cycles spent at that level (this cycle count can be
- // used to compare the relative time of two pulses). If more than a millisecond
- // ellapses without the level changing then the call fails with a 0 response.
- // This is adapted from Arduino's pulseInLong function (which is only available
- // in the very latest IDE versions):
- // https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
- uint32_t DHT::expectPulse(bool level) {
- uint32_t count = 0;
- // On AVR platforms use direct GPIO port access as it's much faster and better
- // for catching pulses that are 10's of microseconds in length:
- #ifdef __AVR
- uint8_t portState = level ? _bit : 0;
- while ((*portInputRegister(_port) & _bit) == portState) {
- if (count++ >= _maxcycles) {
- return 0; // Exceeded timeout, fail.
- }
- }
- // Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266
- // right now, perhaps bugs in direct port access functions?).
- #else
- while (digitalRead(_pin) == level) {
- if (count++ >= _maxcycles) {
- return 0; // Exceeded timeout, fail.
- }
- }
- #endif
- return count;
- }
|